Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675406

RESUMO

Personalized dosages of monoclonal antibodies are being used more regularly to treat various diseases, rendering their quantitation more essential than ever for the right dose administration to the patients. A promising alternative, which overcomes the obstacles of the well-established chromatographic techniques regarding the quantification of biopharmaceuticals, is Raman spectroscopy. This study aimed to develop and validate a novel analytical method for the quantitation of bevacizumab in solutions via Raman spectroscopy. For this purpose, a droplet of the solution was left to dry on a highly reflective carrier and a home-made apparatus was employed for rotation of the sample. Hence, each recorded Raman spectrum was the average of the signal acquired simultaneously from multiple points on a circular circumference. The method was validated, and the detection limit of the antibody was found to be 1.06 mg/mL. Bevacizumab was found to be highly distributed at the formed coffee ring of the dried droplet, though this was a function of solution concentration. Finally, Raman spectra at different distances on the coffee ring were obtained from the four quarters. The lowest bevacizumab detection limit was found at a distance of 75 µm from the external side of the coffee ring and it was determined to be equal to 0.53 mg/mL.

2.
J Pharm Biomed Anal ; 236: 115742, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757545

RESUMO

The severe effects of alcohols on humans trigger the continuous research on the alcohols level measurement in biological fluids. The officially established technique is Headspace Gas Chromatography (HS-GC), while breathalyzers are commonly used by police on the road. However, they all exhibit drawbacks; HS-GC is expensive and labor-intensive, while the precision of breathalyzers is controversial. In the present study, a novel method was developed, for ethanol and methanol detection and quantification in human urine, saliva and blood serum, based on Raman spectroscopy. Biological fluids from healthy adult volunteers were collected, standard solutions of the alcohols in a concentration range from 0.00 µL/mL to 5.00 µL/mL were prepared and analysed using an air-tight and small volume sample carrier. Calibration curves for each binary system (alcohol - biological fluid) were created. Ethanol calculated detectable concentrations were below permissible limits for all biological fluids. In the case of methanol, the limits were not as satisfactory, but lower than intoxication level, due to the difficult spectral discrimination. For both alcohols, the lowest detection limits were recorded for saliva. All detection limits were verified by visual inspection of the spectra. The proposed quantitative method was validated in all cases regarding their specificity, working range, accuracy, precision and sensitivity.

3.
Biosensors (Basel) ; 13(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671970

RESUMO

The measurement of ethanol and toxic alcohol (methanol and isopropanol) strengths in beverages and spirits is crucial for health reasons but also for the identification of adulterated products. Many methodologies have been reported in the literature, based mainly on chromatographic and on spectroscopic techniques. Chromatographic techniques are laborious and time-consuming, while spectroscopic techniques are rapid and need no special sample pretreatment. All techniques were only applied to off-line or at-line manner. In the present work, Raman spectroscopy was used for fast and non-destructive measurements. A "through the container" method was developed for a non-invasive analysis, i.e., analysis without unsealing the bottles. This method, coupled with a miniature portable Raman, can serve for in-line measurements in a production line. The optimum laser focus for maximum spirit signal and minimum glass-wall signal was investigated. Calibration curves for the alcohols of interest were constructed and validated. The limits of detections were calculated and proved to be lower than the legitimate values. The influences of the liquor color and the bottle color, shape, and thickness were checked. Twenty-eight alcoholic products were studied. The concentrations found were compared against the nominal values (from the bottle labels).


Assuntos
Bebidas Alcoólicas , Etanol , Etanol/análise , Bebidas Alcoólicas/análise , Análise Espectral Raman/métodos , Bebidas/análise , Metanol/análise
4.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630756

RESUMO

Vibrational spectroscopic techniques and especially Raman spectroscopy are gaining ground in substituting the officially established chromatographic methods in the identification of ethanol and other volatile substances in body fluids, such as blood, urine, saliva, semen, and vaginal fluids. Although a couple of different carriers and substrates have been employed for the biochemical analysis of these samples, most of them are suffering from important weaknesses as far as the analysis of volatile compounds is concerned. For this reason, in this study three carriers are proposed, and the respective sample preparation methods are described for the determination of ethanol in human urine samples. More specifically, a droplet of the sample on a highly reflective carrier of gold layer, a commercially available cuvette with a mirror to enhance backscattered radiation sealed with a lid, and a home designed microscope slide with a cavity coated with gold layer and covered with transparent cling film have been evaluated. Among the three proposed carriers, the last one achieved a quick, simple, and inexpensive identification of ethanol, which was used as a case study for the volatile compound, in the biological samples. The limit of detection (LoD) was found to be 1.00 µL/mL, while at the same time evaporation of ethanol was prevented.


Assuntos
Líquidos Corporais , Análise Espectral Raman , Líquidos Corporais/química , Etanol/análise , Feminino , Ouro/análise , Humanos , Saliva/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...