Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Physiol Perform ; 18(8): 852-860, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295786

RESUMO

PURPOSE: This study examined the underlying mechanisms of postactivation potentiation and the time course of muscular- and neural-related variables. METHODS: Fourteen trained males executed 4 sets of six 6-second maximum isometric conditioning plantar flexions, with 15 seconds and 2 minutes of interval between the contractions and sets, respectively. Peak twitch torque (TT), rate of torque development, time to peak torque, half relaxation time, and the neural-related variables of H-reflex and electromyogram, normalized to the maximum M-wave (H/M and RMS/M, respectively), were evaluated, as well as the level of the voluntary activation, assessed by the twitch interpolation technique. All neural-related variables were analyzed for the trial within each set when TT was maximal and for the trial within each set when the neural-related variable itself was maximal. RESULTS: Compared with the baseline measures, TT and rate of torque development significantly increased in all sets (P < .001), whereas time to peak torque and half relaxation time significantly decreased in sets 1 to 4 and 2 to 4, respectively (P < .001). However, H/M and the RMS/M did not change for the repetition of each set for which the TT was maximal (P > .05). Interestingly, the within-set maximum H/M ratio of the lateral gastrocnemius muscle revealed a significant increase in all sets (P < .05), compared with the baseline measures. CONCLUSION: One set of 4 contractions with 6-second duration is sufficient to cause postactivation potentiation for most participants, whereas peak TT augmentation does not coincide with changes in the examined neural-related variables. Further experiments should consider the time lag on their maximal values and their inherent between-participants variability.


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Contração Muscular/fisiologia , Torque
2.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850945

RESUMO

This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.


Assuntos
Perna (Membro) , Nervo Tibial , Adulto , Animais , Humanos , Vias Aferentes , Lista de Checagem , Estimulação Elétrica , Peixes
3.
Exp Gerontol ; 165: 111844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643359

RESUMO

PURPOSE: Examining how timely is sensory input processed and regulated after a perturbation while standing, is a key element to understand postural control, especially in people with balance deficits, such as older adults. In this study, we investigated the age-related temporal modulations in spinal excitability, by measuring the soleus H-reflex within the first 250 ms after switching on (V-ON) and off (V-OFF) a pair of vibrators, placed over the Achilles tendons. METHODS: Twenty young (25.1 ± 5.1 yrs) and 16 older (71.8 ± 6.1 yrs) adults stood blindfolded, while 12-15 s periods of Achilles tendon vibration (ATV) were applied with 20-24 s intervals. Anterior/posterior center of pressure and electromyographic (EMG) responses [soleus (SOL) and tibialis anterior (TA)] were assessed whereas SOL H-reflex normalized to maximum M-wave (H/Mmax) and SOL EMG (H/SOL) were evaluated before ATV (Pre) and at 50, 100, 150, 200 and 250 ms after the V-ON and V-OFF. RESULTS: Only in young adults the TA/SOL EMG ratio decreased 100 (p = 0.032) and 150 ms (p < 0.001) after V-ON and the H/Mmax and H/SOL decreased 150-250 ms after V-ON (p < 0.001). At 50-250 ms after V-OFF, H/Mmax was reduced compared to Pre values (p < 0.001), with no differences between the age groups (p > 0.05). H/SOL was decreased for the young adults (p < 0.001) and remained reduced at least for the first 250 ms after V-OFF. At 150 ms after V-OFF, SOL/Mmax was decreased only for the older adults (p < 0.001), whereas TA/SOL EMG gradually increased for both groups (p < 0.001). CONCLUSION: When ATV is introduced while standing, the spinal excitability of older people is reduced later and to a lesser extent compared to young adults. Their limited capacity to down-regulate the "noisy" sensory input generated by ATV gives further evidence of a possible mechanism for their inefficient postural control.


Assuntos
Tendão do Calcâneo , Reflexo H , Tendão do Calcâneo/fisiologia , Idoso , Eletromiografia , Reflexo H/fisiologia , Humanos , Músculo Esquelético/fisiologia , Posição Ortostática , Vibração
4.
Exp Brain Res ; 240(4): 1017-1027, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35171309

RESUMO

This study aimed to investigate age-related differences in electromyographic (EMG) responses to unexpected Achilles tendon vibration (ATV) perturbations while standing blindfold. ATV with variable and random duration (12-15 s) and rest periods (20-24 s) was applied on 18 young and 16 older volunteers. The anterior/posterior center of pressure (CoP) and the soleus (SOL) and tibialis anterior (TA) EMG were analyzed for 1 s before and 8 s after the ATV onset and offset. ATV induced a posterior shift of CoP in both groups, with more pronounced shift in the older group. During ATV onset, the older group demonstrated less SOL and more TA EMG increase compared to the young group. During the first 0.5 s of ATV offset, SOL EMG was decreased in both age groups, while TA showed a burst of EMG activity that was greater in the older group. No difference in the latencies of EMG peaks or valleys was observed between the groups. It is concluded that ATV induces greater posterior CoP shift in older adults, and they adopt a recovery strategy, characterized by a decreased SOL activation and an increased TA activation. These differences are possibly attributed to the increased fear of falling, decreased limits of stability and reduced capacity of older people to reweight their sensory inflow when proprioception is distorted.


Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/fisiologia , Idoso , Eletromiografia , Medo , Humanos , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Vibração
5.
Sports (Basel) ; 8(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340126

RESUMO

The aim of this study was to examine the acute effect of backward running (BwR) during warm-up on a 20-m sprint of boys' performance, compared to forward running (FwR). Fourteen recreationally active preadolescent boys (aged 12.5 ± 0.5 years) were examined in 3 protocols: warm-up (control condition), warm-up with 3 × 10 m additional BwR sprints and warm-up with 3 × 10 m additional FwR sprints. Participants were evaluated 4 minutes after each protocol on a 20-m sprint and intermediate distances, as well as the rate of perceived exertion (RPE). Sprint speed across 10-20 m was significantly higher for the BwR warm-up compared to the regular warm-up (p < 0.05) and a significantly higher RPE after the BwR and FwR protocols compared to the control condition was recorded (p < 0.05). No significant difference was detected across the distances 0-5, 5-10, 0-10 and 0-20 m. Although adding 3 × 10-m sprints of BwR or FwR after the warm-up did not enhance performance in a 20 m sprint of preadolescent boys, the positive effect of BwR across 10-20 m distance suggests that BwR could be an alternative means for enhancing performance for certain phases of a sprint for this age. However, preadolescent boys' response to different sprint conditioning exercise stimuli and the optimization of rest time to maximize performance remain to be determined.

6.
PLoS One ; 14(12): e0226263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826026

RESUMO

The ability to control weight shifting (voluntary sway) is a crucial factor for stability during standing. Postural tracking of an oscillating visual target when standing on a compliant surface (e.g. foam) is a challenging weight shifting task that may alter the stability of the system and the muscle activation patterns needed to compensate for the perturbed state. The purpose of this study was to examine the effects of surface stability and sway frequency on the muscle activation of the lower limb, during visually guided voluntary postural sway. Seventeen volunteers performed a 2-min voluntary sway task in the anterior-posterior direction following with their projected center of pressure (CoPAP) a periodically oscillating visual target on a screen. The target oscillated at a frequency of 0.25 Hz or 0.125 Hz, while the participants swayed on solid ground (stable surface) or on a foam pad (unstable surface), resulting in four experimental conditions. The electromyogram (EMG) of 13 lower limb muscles was measured and the target-CoPAP coupling was evaluated with coherence analysis, whereas the difference in the stability of the system between the conditions was estimated by the maximum Lyapunov exponent (MLE). The results showed that slower oscillations outperformed the faster in terms of coherence and revealed greater stability. On the other hand, unstable ground resulted in an undershooting of the CoPAP to the target and greater MLE. Regarding the EMG data, a decreased triceps surae muscle activation at the low sway frequency compared to the higher was observed, whereas swaying on foam induced higher activation on the tibialis anterior as well. It is concluded that swaying voluntarily on an unstable surface results in reduced CoPAP and joint kinematics stability, that is accomplished by increasing the activation of the distal leg muscles, in order to compensate for this perturbation. The reduction of the sway frequency limits the effect of the unstable surface, on the head and upper body, improves the temporal component of coherence between CoP and target, whereas EMG activity is decreased. These findings might have implications in rehabilitation programs.


Assuntos
Movimento , Postura , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Articulações/fisiologia , Masculino , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...