Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Talanta ; 258: 124409, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871518

RESUMO

In this work, we elaborated the graphite screen-printed electrodes (SPEs) modification with metal nanoparticles formed as a result of spark discharges produced between a metal wire electrode and SPE that are connected to an Arduino board-based DC high voltage power supply. This sparking device allows, on the one hand, the toposelective formation of NPs of controlled dimensions through a direct and liquid-free approach, and on the other hand, controls the number and energy of the discharges delivered to the electrode surface during a single spark event. This way, the potential damage to the SPE surface by the action of heat evolved during the sparking process is considerably minimized compared with the standard setup in which each spark event consists of multiple electrical discharges. Data demonstrated that the sensing properties of the resulting electrodes are significantly improved compared with those achieved when conventional spark generators are employed, as demonstrated for silver-sparked SPEs that exhibit enhanced sensitivity to riboflavin. Sparked AgNp-SPEs were characterized using scanning electron microscopy and voltammetric measurements in alkaline conditions. The analytical performance of sparked AgNP-SPEs was evaluated by various electrochemical techniques. Under optimum conditions, the detection range for DPV was from 1.9 (LOQ) to 100 nM riboflavin (R2 = 0.997), while a limit of detection (LOD, S/N 3) of 0.56 nM was achieved. The analytical utility is demonstrated for the determination of riboflavin in the real matrices of B-complex pharmaceutical preparation and an energy drink.

2.
Talanta ; 239: 123119, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864536

RESUMO

Saliva represents one of the most useful biological samples for non-invasive testing of health status and diseases prognosis and therefore, the development of advanced sensors enabling the determination of biomarkers in unspiked human whole saliva is of immense importance. Herein, we report on the development of a screen-printed graphite sensor modified with carbon nanomaterials generated by spark discharge for the determination of guanine and adenine in unspiked human whole saliva. The designed sensor was developed with a "green", extremely simple, fast (16 s), fully automated "linear mode" sparking process implemented with a 2D positioning device. Carbon nanomaterial-modified surfaces exhibit outstanding electrocatalytic properties enabling the determination of guanine and adenine over the concentration range 5 - 1000 nM and 25 - 1000 nM, while achieving limits of detection (S/N 3) as low as 2 nM and 8 nM, respectively. The sensor was successfully applied to the determination of purine bases in unspiked human whole saliva following a simple assay protocol based on ultrafiltration that effectively alleviates biofouling issues. Recovery was 96-108%.


Assuntos
Grafite , Adenina , Técnicas Eletroquímicas , Eletrodos , Guanina , Humanos , Saliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...