Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 62: 102670, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958249

RESUMO

Keratinocytes of the mammalian skin provide not only mechanical protection for the tissues, but also transmit mechanical, chemical, and thermal stimuli from the external environment to the sensory nerve terminals. Sensory nerve fibers penetrate the epidermal basement membrane and function in the tight intercellular space among keratinocytes. Here we show that epidermal keratinocytes produce hydrogen peroxide upon the activation of the NADPH oxidase dual oxidase 1 (DUOX1). This enzyme can be activated by increasing cytosolic calcium levels. Using DUOX1 knockout animals as a model system we found an increased sensitivity towards certain noxious stimuli in DUOX1-deficient animals, which is not due to structural changes in the skin as evidenced by detailed immunohistochemical and electron-microscopic analysis of epidermal tissue. We show that DUOX1 is expressed in keratinocytes but not in the neural sensory pathway. The release of hydrogen peroxide by activated DUOX1 alters both the activity of neuronal TRPA1 and redox-sensitive potassium channels expressed in dorsal root ganglia primary sensory neurons. We describe hydrogen peroxide, produced by DUOX1 as a paracrine mediator of nociceptive signal transmission. Our results indicate that a novel, hitherto unknown redox mechanism modulates noxious sensory signals.


Assuntos
Peróxido de Hidrogênio , NADPH Oxidases , Animais , Oxidases Duais/genética , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Peróxidos , Nociceptividade , NADPH Oxidase 1 , Mamíferos/metabolismo
2.
Redox Biol ; 54: 102385, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803124

RESUMO

Peroxidasin (PXDN) is involved in the crosslinking of collagen IV, a major constituent of basement membranes. Disruption of basement membrane integrity as observed in genetic alterations of collagen IV or PXDN can result in developmental defects and diverse pathologies. Hence, the study of PXDN activity in (patho)physiological contexts is highly relevant. So far, measurements of PXDN activity have been reported from purified proteins, cell lysates and de-cellularized extracellular matrix. Here, for the first time we report the measurement of PXDN activity in live cells using the Amplex Red assay with a signal amplifying modification. We observe that bromide addition enhances the obtained signal, most likely due to formation of HOBr. Abrogation of signal amplification by the HOBr scavenger carnosine supports this hypothesis. Both, pharmacological inhibition as well as complementary genetic approaches confirm that the obtained signal is indeed related to PXDN activity. We validate the modified assay by investigating the effect of Brefeldin A, to inhibit the secretory pathway and thus the access of PXDN to the extracellular Amplex Red dye. Our method opens up new possibilities to investigate the activity of PXDN in (patho)physiological contexts.


Assuntos
Brometos , Proteínas da Matriz Extracelular , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Peroxidasina
3.
J Med Chem ; 65(11): 7729-7745, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613553

RESUMO

A recently proposed strategy to overcome multidrug resistance (MDR) in cancer is to target the collateral sensitivity of otherwise resistant cells. We designed a library of 120 compounds to explore the chemical space around previously identified 8-hydroxyquinoline-derived Mannich bases with robust MDR-selective toxicity. We included compounds to study the effect of halogen and alkoxymethyl substitutions in R5 in combination with different Mannich bases in R7, a shift of the Mannich base from R7 to R5, as well as the introduction of an aromatic moiety. Cytotoxicity tests performed on a panel of parental and MDR cells highlight a strong influence of experimentally determined pKa values of the donor atom moieties, indicating that protonation and metal chelation are important factors modulating the MDR-selective anticancer activity of the studied compounds. Our results identify structural requirements increasing MDR-selective anticancer activity, providing guidelines for the development of more effective anticancer chelators targeting MDR cancer.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Bases de Mannich/química , Bases de Mannich/farmacologia , Oxiquinolina/química , Oxiquinolina/farmacologia , Relação Estrutura-Atividade
4.
Dalton Trans ; 50(23): 8218-8231, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032247

RESUMO

A series of half-sandwich polypyridyl complexes was synthesized and compared focusing on structural, cytotoxic and aqueous solution behaviour. The formula of the synthesized complexes is [M(arene)(N,N)Cl]Cl, where M: Ru or Rh, arene: p-cymene, toluene or C5Me5-, (N,N): 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen) or 2,9-dimethyl-1,10-phenanthroline (neo). The structures of five half-sandwich complexes were determined by X-ray crystallography. It was found that introducing methyl groups next to the coordinating nitrogen atoms of the bidentate ligand causes steric congestion around the metal centre which changes the angle between ligand planes. The ligands and the Rh complexes showed significant cytotoxicity in A2780 and MES-SA cancer cell lines (IC50 = 0.1-56 µM) and in the cisplatin-resistant A2780cis cells. Paradoxically, phen and dmb as well as their half-sandwich Rh complexes showed increased toxicity against multidrug resistant MES-SA/Dx5 cells. In contrast, coordination to Ru caused loss of toxicity. Solution equilibrium constants showed that the studied metal complexes have high stability, and no dissociation was found for Ru and Rh complexes even at micromolar concentrations in a wide pH range. However, in the case of Ru complexes a slow and irreversible decomposition, namely arene loss, was also observed, which was more pronounced in light exposure in aqueous solution. In the case of neo, the methyl groups next to the nitrogen atoms significantly decrease the stability of complexes. For Rh complexes, the order of the stability constants corrected with ligand basicity (log K*): 9.78 (phen) > 9.01 (dmb) > 8.89 (bpy) > 3.93 (neo). The coordinated neo resulted in an enormous decrease in the chloride ion affinity of Ru compounds. Based on the results, a universal model was introduced for the prediction of chloride ion capability of half-sandwich Rh and Ru complexes. It combines the effects of the bidentate ligand and the M(arene) part using only two terms, performing multilinear regression procedure.


Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Ródio/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Ródio/química , Rutênio/química , Soluções , Células Tumorais Cultivadas
5.
ACS Omega ; 6(11): 7469-7477, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778259

RESUMO

Comprehensive analysis of post-translation modifications (PTMs) is an important mission of proteomics. However, the consideration of PTMs increases the search space and may therefore impair the efficiency of protein identification. Using thousands of proteomic searches, we investigated the practical aspects of considering multiple PTMs in Byonic searches for the maximization of protein and peptide hits. The inclusion of all PTMs, which occur with at least 2% frequency in the sample, has an advantageous effect on protein and peptide identification. A linear relationship was established between the number of considered PTMs and the number of reliably identified peptides and proteins. Even though they handle multiple modifications less efficiently, the results of MASCOT (using the Percolator function) and Andromeda (the search engine included in MaxQuant) became comparable to those of Byonic, in the case of a few PTMs.

6.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466433

RESUMO

Resistance to chemotherapeutic agents is a major obstacle in cancer treatment. A recently proposed strategy is to target the collateral sensitivity of multidrug resistant (MDR) cancer. Paradoxically, the toxicity of certain metal chelating agents is increased, rather than decreased, by the function of P-glycoprotein (Pgp), which is known to confer resistance by effluxing chemotherapeutic compounds from cancer cells. We have recently characterized and compared the solution's chemical properties including ligand protonation and the metal binding properties of a set of structurally related 8-hydroxyquinoline derived Mannich bases. Here we characterize the impact of the solution stability and redox activity of their iron(III) and copper(II) complexes on MDR-selective toxicity. Our results show that the MDR-selective anticancer activity of the studied 8-hydroxyquinoline derived Mannich bases is associated with the iron deprivation of MDR cells and the preferential formation of redox-active copper(II) complexes, which undergo intracellular redox-cycling to induce oxidative stress.

7.
Dalton Trans ; 49(46): 16887-16902, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33185224

RESUMO

α-N-Heterocyclic thiosemicarbazones are an important class of investigational anticancer drugs. The most prominent representative is 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), which has shown promising results in clinical trials and is currently evaluated in phase III. In this study, we investigated the influence of a chalcogen atom exchange from S (Triapine) to O (O-Triapine) and Se (Se-Triapine) and the methylation of the hydrazonic NH moiety (Me-Triapine) on their complexation with Fe(ii), Fe(iii) and Cu(ii) ions and their cytotoxicity. The main aim of this study was to characterize and compare the most feasible chemical forms in solution, their stability and redox properties, as well as to reveal the relationships of the solution speciation and kinetic data with cytotoxic activity. The complex equilibria and redox properties of the complexes were characterized by the combined use of pH-potentiometry, UV-visible spectrophotometry, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. These revealed that Se-Triapine forms Cu(ii) complexes with higher, and O-Triapine with lower stability as compared with Triapine. Me-Triapine, which is not able to coordinate via the typical (N,N,S-) donor set, nevertheless coordinates to Cu(ii) with unexpected high stability. The Cu(ii) complexes of Se-Triapine and Me-Triapine can be relatively slowly reduced by glutathione at pH 7.4 (but not by ascorbate), similarly to Cu(ii)-Triapine. In contrast, the Cu(ii)-O-Triapine complex can be reduced by both reducing agents in rapid redox reactions. Se-Triapine and Triapine form high stability complexes with both Fe(ii) and Fe(iii) ions, while O-Triapine has a much stronger preference towards Fe(iii) and Me-Triapine towards Fe(ii). This difference in the iron preference of the ligands seems to have a strong impact on their cytotoxic effects, which was measured in a human uterine sarcoma cell line (MES-SA) and its multidrug-resistant subline (MES-SA/Dx5). The Cu(ii) complexes of these calcogensemicarbazones are moderately toxic, and the highest level of ROS generation was found for the Cu(ii) complex of O-Triapine, which is the most reducible.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Calcogênios/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Piridinas/química , Tiossemicarbazonas/química , Linhagem Celular Tumoral , Cobre/química , Humanos , Ferro/química , Metilação , Soluções
8.
Antioxid Redox Signal ; 33(6): 395-414, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32336116

RESUMO

Aims: Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the past few years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs. Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress. Innovation: Consequently, we hypothesize that in the case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the endoplasmic reticulum-resident protein disulfide isomerase. Conclusion: The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Solubilidade
9.
Cancer Res ; 80(4): 663-674, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31888888

RESUMO

Clinical evidence shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and, eventually, most tumors become resistant to all available therapies. We compiled a focused library consisting of >500 commercially available or newly synthetized 8-hydroxyquinoline (8OHQ) derivatives whose toxicity is paradoxically increased rather than decreased by the activity of P-glycoprotein (Pgp), a transporter conferring multidrug resistance (MDR). Here, we deciphered the mechanism of action of NSC297366 that shows exceptionally strong Pgp-potentiated toxicity. Treatment of cells with NSC297366 resulted in changes associated with the activity of potent anticancer iron chelators. Strikingly, iron depletion was more pronounced in MDR cells due to the Pgp-mediated efflux of NSC297366-iron complexes. Our results indicate that iron homeostasis can be targeted by MDR-selective compounds for the selective elimination of multidrug resistant cancer cells, setting the stage for a therapeutic approach to fight transporter-mediated drug resistance. SIGNIFICANCE: Modulation of the MDR phenotype has the potential to increase the efficacy of anticancer therapies. These findings show that the MDR transporter is a "double-edged sword" that can be turned against resistant cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Oxiquinolina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Quelantes de Ferro/uso terapêutico , Neoplasias/patologia , Oxiquinolina/análogos & derivados , Oxiquinolina/uso terapêutico
10.
Antioxid Redox Signal ; 30(8): 1062-1082, 2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29334758

RESUMO

SIGNIFICANCE: During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES: In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS: We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.


Assuntos
Antineoplásicos/química , Ferro/metabolismo , Neoplasias/metabolismo , Tiossemicarbazonas/química , Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Cobre/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Piridinas/farmacologia , Tiossemicarbazonas/farmacologia
11.
J Cheminform ; 11(1): 67, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33430961

RESUMO

Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similarities were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteristic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, previously unknown chemotypes possessing in vitro Top2 inhibitory activity.

12.
Dalton Trans ; 47(47): 17032-17045, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460942

RESUMO

The anticancer activity of 8-hydroxyquinolines relies on complex formation with redox active copper and iron ions. Here we employ UV-visible spectrophotometry and EPR spectroscopy to compare proton dissociation and complex formation processes of the reference compound 8-hydroxyquinoline (Q-1) and three related Mannich bases to reveal possible correlations with biological activity. The studied derivatives harbor a CH2-N moiety at position 7 linked to morpholine (Q-2), piperidine (Q-3), and chlorine and fluorobenzylamino (Q-4) substituents. Solid phase structures of Q-3, Q-4·HCl·H2O, [(Cu(HQ-2)2)2]·(CH3OH)2·Cl4·(H2O)2, [Cu(Q-3)2]·Cl2 and [Cu(HQ-4)2(CH3OH)]·ZnCl4·CH3OH were characterized by single-crystal X-ray diffraction analysis. In addition, the redox properties of the copper and iron complexes were studied by cyclic voltammetry, and the direct reaction with physiologically relevant reductants (glutathione and ascorbic acid) was monitored. In vitro cytotoxicity studies conducted with the human uterine sarcoma MES-SA/Dx5 cell line reveal the significant cytotoxicity of Q-2, Q-3, and Q-4 in the sub- to low micromolar range (IC50 values 0.2-3.3 µM). Correlation analysis of the anticancer activity and the metal binding properties of the compound series indicates that, at physiological pH, weaker copper(ii) and iron(iii) binding results in elevated toxicity (e.g.Q4: pCu = 13.0, pFe = 6.8, IC50 = 0.2 µM vs.Q1: pCu = 15.1, pFe = 13.0 IC50 = 2.5 µM). Although the studied 8-hydroxyquinolines preferentially bind copper(ii) over iron(iii), the cyclic voltammetry data revealed that the more cytotoxic ligands preferentially stabilize the lower oxidation state of the metal ions. A linear relationship between the pKa (OH) and IC50 values of the studied 8-hydroxyquinolines was found. In summary, we identify Q-4 as a potent and selective anticancer candidate with significant toxicity in drug resistant cells.


Assuntos
Antineoplásicos/farmacologia , Cobre/química , Compostos Férricos/química , Oxiquinolina/química , Sarcoma/tratamento farmacológico , Neoplasias Uterinas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Ascórbico/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glutationa/química , Humanos , Concentração Inibidora 50 , Bases de Mannich/química
13.
Cell Death Dis ; 9(11): 1052, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323190

RESUMO

Due to their high biological activity, thiosemicarbazones have been developed for treatment of diverse diseases, including cancer, resulting in multiple clinical trials especially of the lead compound Triapine. During the last years, a novel subclass of anticancer thiosemicarbazones has attracted substantial interest based on their enhanced cytotoxic activity. Increasing evidence suggests that the double-dimethylated Triapine derivative Me2NNMe2 differs from Triapine not only in its efficacy but also in its mode of action. Here we show that Me2NNMe2- (but not Triapine)-treated cancer cells exhibit all hallmarks of paraptotic cell death including, besides the appearance of endoplasmic reticulum (ER)-derived vesicles, also mitochondrial swelling and caspase-independent cell death via the MAPK signaling pathway. Subsequently, we uncover that the copper complex of Me2NNMe2 (a supposed intracellular metabolite) inhibits the ER-resident protein disulfide isomerase, resulting in a specific form of ER stress based on disruption of the Ca2+ and ER thiol redox homeostasis. Our findings indicate that compounds like Me2NNMe2 are of interest especially for the treatment of apoptosis-resistant cancer and provide new insights into mechanisms underlying drug-induced paraptosis.


Assuntos
Antineoplásicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Piridinas/farmacologia , Compostos de Sulfidrila/antagonistas & inibidores , Compostos de Sulfidrila/metabolismo , Tiossemicarbazonas/síntese química
14.
Dalton Trans ; 46(13): 4382-4396, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28287667

RESUMO

Complex formation processes of [Ru(η6-p-cymene)(H2O)3]+ and [Rh(η5-C5Me5)(H2O)3]+ organometallic cations with 8-hydroxyquinoline (HQ) ligands were studied in aqueous solution by the combined use of 1H NMR spectroscopy, UV-visible spectrophotometry and pH-potentiometry. Solution stability, chloride ion affinity and lipophilicity of the complexes were characterized together with the in vitro cytotoxicity against a pair of cancer cell lines, responsive and resistant to classic chemotherapy. The solid phase structure of the [Rh(η5-C5Me5)(8-quinolinolato)(Cl)] complex was characterized by single-crystal X-ray diffraction analysis. In addition to the unsubstituted HQ its 7-(1-piperidinylmethyl) (PHQ) and 5-sulfonate (HQS) derivatives were involved. PHQ has a significant preference for targeting multidrug resistant cancer cell lines, while HQS served as a water soluble model compound. The equilibrium studies revealed the formation of mono[M(L)(H2O)] complexes with prominently high solution stability, which predominate at physiological pH even in the micromolar concentration range, and the formation of mixed hydroxido [M(L)(OH)] complexes was characterized by relatively high pKa values (8.5-10.3). In comparison to the Rh(η5-C5Me5) species the complexation process with Ru(η6-p-cymene) is much slower, and both the pKa values and the H2O/Cl- co-ligand exchange constants are lower by 1-1.5 orders of magnitude. The stability order obtained for these organometallic complexes is as follows: HQS > HQ > PHQ. The cytotoxicity of the ligands and their Ru(η6-p-cymene) and Rh(η5-C5Me5) complexes was investigated against MES-SA (human uterine sarcoma) cell line and its multidrug resistant counterpart (MES-SA/Dx5). HQ and its complexes show similar cytotoxicity in both cell lines. In contrast, PHQ and its Rh(η5-C5Me5) complex are more potent against MES-SA/Dx5 cells, while this selectivity could not be observed for the Ru(η6-p-cymene) complex.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Oxiquinolina/química , Ródio/química , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ciclopentanos/química , Cimenos , Descoberta de Drogas , Humanos , Monoterpenos/química , Compostos Organometálicos , Piperidinas/química , Ácidos Sulfônicos/química , Água/química
15.
Mol Cancer Ther ; 16(1): 45-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760838

RESUMO

Despite significant progress, resistance to chemotherapy is still the main reason why cancer remains a deadly disease. An attractive strategy is to target the collateral sensitivity of otherwise multidrug resistant (MDR) cancer. In this study, our aim was to catalog various compounds that were reported to elicit increased toxicity in P-glycoprotein (Pgp)-overexpressing MDR cells. We show that the activity of most of the serendipitously identified compounds reported to target MDR cells is in fact cell-line specific, and is not influenced significantly by the function of Pgp. In contrast, novel 8-hydroxyquinoline derivatives that we identify in the National Cancer Institute (NCI) drug repository possess a robust Pgp-dependent toxic activity across diverse cell lines. Pgp expression associated with the resistance of the doxorubicin-resistant Brca1-/-;p53-/- spontaneous mouse mammary carcinoma cells could be eliminated by a single treatment with NSC57969, suggesting that MDR-selective compounds can effectively revert the MDR phenotype of cells expressing Pgp at clinically relevant levels. The discovery of new MDR-selective compounds shows the potential of this emerging technology and highlights the 8-hydroxyquinoline scaffold as a promising starting point for the development of compounds targeting the Achilles heel of drug-resistant cancer. Mol Cancer Ther; 16(1); 45-56. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Bases de Dados de Produtos Farmacêuticos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Knockout , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur J Med Chem ; 117: 335-54, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27161177

RESUMO

There is a constant need for new therapies against multidrug resistant (MDR) cancer. An attractive strategy is to develop chelators that display significant antitumor activity in multidrug resistant cancer cell lines overexpressing the drug efflux pump P-glycoprotein. In this study we used a panel of sensitive and MDR cancer cell lines to evaluate the toxicity of picolinylidene and salicylidene thiosemicarbazone, arylhydrazone, as well as picolinylidene and salicylidene hydrazino-benzothiazole derivatives. Our results confirm the collateral sensitivity of MDR cells to isatin-ß-thiosemicarbazones, and identify several chelator scaffolds with a potential to overcome multidrug resistance. Analysis of structure-activity-relationships within the investigated compound library indicates that NNS and NNN donor chelators show superior toxicity as compared to ONS derivatives regardless of the resistance status of the cells.


Assuntos
Benzotiazóis/farmacologia , Hidrazonas/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiazóis/química , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Hidrazonas/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química
17.
J Inorg Biochem ; 144: 18-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589012

RESUMO

Three novel pyrimidinylhydrazones substituted at either the aromatic moiety or at the imine carbon atom were synthesized and characterized by standard analytical methods. All compounds were found to be toxic in the micro- to submicromolar range against a diverse panel of cancer cell lines including multidrug resistant (MDR) derivatives expressing P-glycoprotein (Pgp). UV-visible spectrophotometry experiments demonstrated that the most active compound (3) forms highly stable complexes with iron(III) and copper(II) in a wide pH range with a stronger preference towards iron(III). The redox activity of the iron and copper complexes of ligand 3 was investigated using cyclic voltammetry and was tested with cellular reductants. The impact of reactive oxygen species (ROS) on the mechanism of toxicity was assessed using the ROS-sensitive cell permeable dye 2',7'-dichlorofluorescin diacetate (DCFDA). Our results demonstrate that the studied pyrimidinylhydrazones form redox-active iron and copper complexes that are capable of producing intracellular ROS, which might lead to cellular damage and cell death in cancer cells regardless of their resistance status.


Assuntos
Antineoplásicos/síntese química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cobre/química , Cães , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Fluoresceínas , Hidrazonas/química , Hidrazonas/metabolismo , Ferro/química , Ligantes , Células Madin Darby de Rim Canino , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria
18.
Bioorg Med Chem ; 20(1): 346-55, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22112540

RESUMO

Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP binding cassette family of transport proteins. BCRP has been found to confer multidrug resistance in cancer cells. A strategy to overcome resistance due to BCRP overexpression is the investigation of potent and specific BCRP inhibitors. The aim of the current study was to investigate different multi-substituted chalcones for their BCRP inhibition. We synthesized chalcones and benzochalcones with different substituents (viz. OH, OCH(3), Cl) on ring A and B of the chalcone structure. All synthesized compounds were tested by Hoechst 33342 accumulation assay to determine inhibitory activity in MCF-7 MX and MDCK cells expressing BCRP. The compounds were also screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity in the calcein AM accumulation assay and were found to be selective towards inhibition of BCRP. Substituents at position 2' and 4' on chalcone ring A were found to be essential for activity; additionally there was a great influence of substituents on ring B. Presence of 3,4-dimethoxy substitution on ring B was found to be optimal, while presence of 2- and 4-chloro substitution also showed a positive effect on BCRP inhibition.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/química , Chalconas/química , Proteínas de Neoplasias/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
19.
ChemMedChem ; 7(1): 159-70, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22025402

RESUMO

GSK0660 (1) is the first peroxisome proliferator-activated receptor (PPAR) ß/δ-selective inhibitory ligand described in the literature. Based on its structure, we designed and synthesized a series of modified compounds to establish preliminary structure-activity relationships. Most beneficial for increased binding affinity towards the PPARß/δ ligand binding domain was the replacement of the 4'-aminophenyl substituent by medium-length n-alkyl chains, such as n-butyl or iso-pentyl. These compounds show activity down to the one-digit nanomolar range, thus possessing up to a tenfold higher binding affinity compared with GSK0660. Additionally, the subtype-specific inhibition of PPARß/δ was confirmed in a cell-based assay making these compounds invaluable tools for the further exploration of the functions of PPARß/δ.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Sulfonas/química , Sulfonas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Animais , Linhagem Celular , Humanos , PPAR delta/metabolismo , PPAR beta/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...