Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(11): 7845-7851, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31556298

RESUMO

Passing a current across two touching C60 molecules imposes a nonequilibrium population of bonding and antibonding molecular orbitals, which changes the equilibrium bond character and strength. A current-induced bond force therefore contributes to the total force at chemical-bond distances. The combination of first-principles calculations with scanning probe experiments exploring currents and forces in a wide C60-C60 distance range consistently evidences the presence of current-induced attraction that occurs when the two molecules are on the verge of forming a chemical bond. The unique opportunity to arrange matter at the atomic scale with the atomic force and scanning tunneling microscope tip has enabled closely matching molecular junctions in theory and experiment. The findings consequently represent the first report of current-induced bond forces at the single-molecule level and further elucidate the intimate relation between charge transport and force. The results are relevant to molecular electronics and chemical reactions in the presence of a current.

2.
Nano Lett ; 19(1): 576-581, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30539639

RESUMO

Electrons in graphene can show diffraction and interference phenomena fully analogous to light thanks to their Dirac-like energy dispersion. However, it is not clear how this optical analogy persists in nanostructured graphene, for example, with pores. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly (Moreno et al. Science 2018, 360, 199). We predict that electrons propagating in NPG exhibit the interference Talbot effect, analogous to photons in coupled waveguides. Our results are obtained by parameter-free atomistic calculations of real-sized NPG samples based on seamlessly integrated density functional theory and tight-binding regions. We link the origins of this interference phenomenon to the band structure of the NPG. Most importantly, we demonstrate how the Talbot effect may be detected experimentally using dual-probe scanning tunneling microscopy. Talbot interference of electron waves in NPG or other related materials may open up new opportunities for future quantum electronics, computing, or sensing.

3.
J Phys Condens Matter ; 30(36): 364001, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30061475

RESUMO

Graphene has proven to host outstanding mesoscopic effects involving massless Dirac quasiparticles travelling ballistically resulting in the current flow exhibiting light-like behaviour. A new branch of 2D electronics inspired by the standard principles of optics is rapidly evolving, calling for a deeper understanding of transport in large-scale devices at a quantum level. Here we perform large-scale quantum transport calculations based on a tight-binding model of graphene and the non-equilibrium Green's function method and include the effects of p-n junctions of different shape, magnetic field, and absorptive regions acting as drains for current. We stress the importance of choosing absorbing boundary conditions in the calculations to correctly capture how current flows in the limit of infinite devices. As a specific application we present a fully quantum-mechanical framework for the '2D Dirac fermion microscope' recently proposed by Bøggild et al (2017 Nat. Commun. 8 10.1038), tackling several key electron-optical effects therein predicted via semiclassical trajectory simulations, such as electron beam collimation, deflection and scattering off Veselago dots. Our results confirm that a semiclassical approach to a large extend is sufficient to capture the main transport features in the mesoscopic limit and the optical regime, but also that a richer electron-optical landscape is to be expected when coherence or other purely quantum effects are accounted for in the simulations.

4.
J Phys Condens Matter ; 30(25): 25LT01, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29762126

RESUMO

We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

5.
Nano Lett ; 17(4): 2660-2666, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28263606

RESUMO

Stacked van der Waals (vdW) heterostructures where semiconducting two-dimensional (2D) materials are contacted by overlaid graphene electrodes enable atomically thin, flexible electronics. We use first-principles quantum transport simulations of graphene-contacted MoS2 devices to show how the transistor effect critically depends on the stacking configuration relative to the gate electrode. We can trace this behavior to the stacking-dependent response of the contact region to the capacitive electric field induced by the gate. The contact resistance is a central parameter and our observation establishes an important design rule for ultrathin devices based on 2D atomic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...