Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
2.
Front Neuroanat ; 8: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904303

RESUMO

The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei, or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington's, and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline, and 9 serotonin cell groups) received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

3.
PLoS One ; 8(4): e59809, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560056

RESUMO

STUDY OBJECTIVES: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance. DESIGN: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long 'rebound sleep'. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in 'deprived' and 'rebound' groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline. RESULTS: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during 'rebound' reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during 'rebound'. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep. CONCLUSIONS: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/farmacologia , Hipotálamo/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Sono REM/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroencefalografia , Expressão Gênica/efeitos dos fármacos , Hipotálamo/fisiologia , Injeções Intraventriculares , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Nucleobindinas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Vigília/fisiologia
4.
Neurochem Int ; 59(5): 686-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740944

RESUMO

Rapid eye movement (REM) sleep rebound following REM deprivation using the platform-on-water method is characterized by increased time spent in REM sleep and activation of melanin-concentrating hormone (MCH) expressing neurons. Orexinergic neurons discharge reciprocally to MCH-ergic neurons across the sleep-wake cycle. However, the relation between REM architecture and the aforementioned neuropeptides remained unclear. MCH-ergic neurons can be divided into two subpopulations regarding their cocaine- and amphetamine-regulated transcript (CART) immunoreactivity, and among them the activation of CART-immunoreactive subpopulation is higher during the REM rebound. However, the possible role of stress in this association has not been elucidated. Our aims were to analyze the relationship between the architecture of REM rebound and the activation of hypothalamic MCH-ergic and orexinergic neurons. We also intended to separate the effect of stress and REM deprivation on the subsequent activation of subpopulations of MCH-ergic neurons. In order to detect neuronal activity, we performed MCH/cFos and orexin/cFos double immunohistochemistry on home cage, sleep deprived and sleep-rebound rats using the platform-on-water method with small and large (stress control) platforms. Furthermore, REM architecture was analyzed and a triple MCH/CART/cFos immunohistochemistry was also performed on the rebound groups in the same animals. We found that the activity of MCH- and orexin-immunoreactive neurons during REM rebound was positively and negatively correlated with the number of REM bouts, respectively. A negative reciprocal correlation was also found between the activation of MCH- and orexin-immunoreactive neurons during REM rebound. Furthermore, difference between the activation of CART-immunoreactive (CART-IR) and non-CART-immunoreactive MCH-ergic neuron subpopulations was found only after selective REM deprivation, it was absent in the large platform (stress control) rebound group. These results support the role of CART-IR subpopulation of MCH-ergic neurons and the inverse relationship of MCH and orexin in the regulation of REM sleep after REM sleep deprivation.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Hormônios Hipofisários/metabolismo , Privação do Sono/metabolismo , Fases do Sono/fisiologia , Sono REM/fisiologia , Animais , Nível de Alerta/fisiologia , Eletroencefalografia , Eletromiografia , Fenômenos Eletrofisiológicos , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Orexinas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...