Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (163)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-33044446

RESUMO

Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure and death in critically ill patients, and there is an urgent need to find effective therapies. Preclinical studies have shown that inhaled halogenated agents may have beneficial effects in animal models of ARDS. The development of new devices to administer halogenated agents using modern intensive care unit (ICU) ventilators has significantly simplified the dispensing of halogenated agents to ICU patients. Because previous experimental and clinical research suggested potential benefits of halogenated volatiles, such as sevoflurane or isoflurane, for lung alveolar epithelial injury and inflammation, two pathophysiologic landmarks of diffuse alveolar damage during ARDS, we designed an animal model to understand the mechanisms of the effects of halogenated agents on lung injury and repair. After general anesthesia, tracheal intubation, and the initiation of mechanical ventilation, ARDS was induced in piglets via the intratracheal instillation of hydrochloric acid. Then, the piglets were sedated with inhaled sevoflurane or isoflurane using an ICU-type device, and the animals were ventilated with lung-protective mechanical ventilation during a 4 h period. During the study period, blood and alveolar samples were collected to evaluate arterial oxygenation, the permeability of the alveolar-capillary membrane, alveolar fluid clearance, and lung inflammation. Mechanical ventilation parameters were also collected throughout the experiment. Although this model induced a marked decrease in arterial oxygenation with altered alveolar-capillary permeability, it is reproducible and is characterized by a rapid onset, good stability over time, and no fatal complications. We have developed a piglet model of acid aspiration that reproduces most of the physiological, biological, and pathological features of clinical ARDS, and it will be helpful to further our understanding of the potential lung-protective effects of halogenated agents delivered through devices used for inhaled ICU sedation.


Assuntos
Halogenação , Unidades de Terapia Intensiva , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/patologia , Anestesia , Anestésicos/farmacologia , Animais , Gasometria , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Isoflurano/farmacologia , Pulmão/efeitos dos fármacos , Masculino , Oxigênio , Respiração Artificial , Suínos
2.
Sci Rep ; 9(1): 9227, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239497

RESUMO

The receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals. Forty-eight anaesthetised Landrace piglets were randomised into a control group and three treatment groups. Animals allocated to treatment groups underwent orotracheal instillation of hydrochloric acid (i) alone; (ii) in combination with intravenous administration of a RAGE antagonist peptide (RAP), or (iii) recombinant soluble (s)RAGE. The primary outcome was net AFC at 4 h. Arterial oxygenation was assessed hourly and alveolar-capillary permeability, alveolar inflammation and lung histology were assessed at 4 h. Treatment with either RAP or sRAGE improved net AFC (median [interquartile range], 21.2 [18.8-21.7] and 19.5 [17.1-21.5] %/h, respectively, versus 12.6 [3.2-18.8] %/h in injured, untreated controls), oxygenation and decreased alveolar inflammation and histological evidence of tissue injury after ARDS. These findings suggest that RAGE inhibition restored AFC and attenuated lung injury in a piglet model of acid-induced ARDS.


Assuntos
Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Síndrome do Desconforto Respiratório/metabolismo , Animais , Modelos Animais de Doenças , Hemodinâmica , Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia , Suínos
3.
J Vis Exp ; (140)2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30417892

RESUMO

Acute respiratory distress syndrome (ARDS) is a syndrome of diffuse alveolar injury with impaired alveolar fluid clearance and severe inflammation. The use of halogenated agents, such as sevoflurane or isoflurane, for the sedation of intensive care unit (ICU) patients can improve gas exchange, reduce alveolar edema, and attenuate inflammation during ARDS. However, data on the use of inhaled agents for continuous sedation in the ICU to treat or prevent lung damage is lacking. To study the effects of halogenated agents on alveolar epithelial cells under "physiologic" conditions, we describe an easy system to culture cells at the air-liquid interface and expose them to halogenated agents to provide precise controlled "air" fractions and "medium" concentrations for these agents. We developed a sealed air-tight chamber in which plates with human alveolar epithelial immortalized cells could be exposed to a precise, controlled fraction of sevoflurane or isoflurane using a continuous gas flow provided by an anesthetic machine circuit. Cells were exposed to 4% of sevoflurane and 1% of isoflurane for 24 hours. Gas mass spectrometry was performed to determine the concentration of halogenated agents dissolved in the medium. After the first hour, the concentrations of sevoflurane and isoflurane in the medium were 251 mg/L and 25 mg/L, respectively. The curves representing the concentrations of both sevoflurane and isoflurane dissolved in the medium showed similar courses over time, with a plateau reached at one hour after exposure. This protocol was specifically designed to reach precise and controlled concentrations of sevoflurane or isoflurane in vitro to improve our understanding of mechanisms involved in epithelial lung injury during ARDS and to test novel therapies for the syndrome.


Assuntos
Células Epiteliais Alveolares/metabolismo , Gases/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...