Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 83: 102729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988815

RESUMO

Cryo-electron microscopy (cryoEM) has become a popular method for determining high-resolution structures of biomolecules. However, data processing can be time-consuming, particularly for new researchers entering the field. To improve data quality and increase data collection efficiency, several software packages have been developed for on-the-fly data processing with various degrees of automation. These software packages allow researchers to perform tasks such as motion correction, CTF estimation, 2D classification, and 3D reconstruction in real-time, with minimal human input. On-the-fly data processing can not only improve data collection efficiency but also increase the productivity of instrumentation in high demand. However, the various software packages available differ in their performance, computational requirements, and levels of automation. In this review, we describe the minimal metrics used to assess data quality during data collection, outline the features of an ideal on-the-fly data processing software systems, and provide results from using three of these systems.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Humanos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Automação
2.
PLoS One ; 18(6): e0287461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352230

RESUMO

Type III CRISPR-Cas systems employ multiprotein effector complexes bound to small CRISPR RNAs (crRNAs) to detect foreign RNA transcripts and elicit a complex immune response that leads to the destruction of invading RNA and DNA. Type III systems are among the most widespread in nature, and emerging interest in harnessing these systems for biotechnology applications highlights the need for detailed structural analyses of representatives from diverse organisms. We performed cryo-EM reconstructions of the Type III-A Cas10-Csm effector complex from S. epidermidis bound to an intact, cognate target RNA and identified two oligomeric states, a 276 kDa complex and a 318 kDa complex. 3.1 Å density for the well-ordered 276 kDa complex allowed construction of atomic models for the Csm2, Csm3, Csm4 and Csm5 subunits within the complex along with the crRNA and target RNA. We also collected small-angle X-ray scattering data which was consistent with the 276 kDa Cas10-Csm architecture we identified. Detailed comparisons between the S. epidermidis Cas10-Csm structure and the well-resolved bacterial (S. thermophilus) and archaeal (T. onnurineus) Cas10-Csm structures reveal differences in how the complexes interact with target RNA and crRNA which are likely to have functional ramifications. These structural comparisons shed light on the unique features of Type III-A systems from diverse organisms and will assist in improving biotechnologies derived from Type III-A effector complexes.


Assuntos
Proteínas Associadas a CRISPR , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , RNA Bacteriano/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Associadas a CRISPR/genética
3.
Front Mol Biosci ; 10: 1296941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288336

RESUMO

With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.

4.
Bio Protoc ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36618877

RESUMO

Cryo-focused ion beam (FIB) milling of vitrified specimens is emerging as a powerful method for in situ specimen preparation. It allows for the preservation of native and near-native conditions in cells, and can reveal the molecular structure of protein complexes when combined with cryo-electron tomography (cryo-ET) and sub-tomogram averaging. Cryo-FIB milling is often performed on plunge-frozen specimens of limited thickness. However, this approach may have several disadvantages, including low throughput for cells that are small, or at low concentration, or poorly distributed across accessible areas of the grid, as well as for samples that may adopt a preferred orientation. Here, we present a detailed description of the "Waffle Method" protocol for vitrifying thick specimens followed by a semi-automated milling procedure using the Thermo Fisher Scientific (TFS) Aquilos 2 cryo-FIB/scanning electron microscope (SEM) instrument and AutoTEM Cryo software to produce cryo-lamellae. With this protocol, cryo-lamellae may be generated from specimens, such as microsporidia spores, yeast, bacteria, and mammalian cells, as well as purified proteins and protein complexes. An experienced lab can perform the entire protocol presented here within an 8-hour working day, resulting in two to three cryo-lamellae with target thicknesses of 100-200 nm and dimensions of approximately 12 µm width and 15-20 µm length. For cryo-FIB/SEMs with particularly low-contamination chambers, the protocol can be extended to overnight milling, resulting in up to 16 cryo-lamellae in 24 h. Graphical abstract.

5.
Sci Adv ; 6(30): eaba8397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32743076

RESUMO

Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor ß2 appendages crosslink adjacent CHC ß-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring ß-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.

6.
J Struct Biol ; 204(2): 250-260, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172710

RESUMO

In COPII mediated vesicle formation, Sec13/Sec31 heterotetramers play a role in organizing the membranes into a spherical vesicle. There they oligomerize into a cage that interacts with the other COPII proteins to direct vesicle formation and concentrate cargo into a bud. In this role they must be flexible to accommodate different sizes and shapes of cargo, but also have elements that provide rigidity to help deform the membrane. Here we characterize the influence the C-terminal disordered region of Sec31 has on cage flexibility and rigidity. After deleting this region (residues 820-1220), we characterized Sec13/Sec31ΔC heterotetramers biophysically and structurally through cryo-EM. Our results show that Sec13/31ΔC self-assembles into canonical cuboctahedral cages in vitro at buffer conditions similar to wild type. The distribution of cage sizes indicated that unlike the wild type, Sec13/31ΔC cages have a more homogeneous geometry. However, the structure of cuboctahedrons exhibited more conformational heterogeneity than wild type. Through localized reconstruction of cage vertices and molecular dynamics flexible fitting we found a new hinge for the flexing of Sec31 ß-propeller domain and more flexibility of the previously known hinge. Together, these results show that the C-terminal region of Sec31 regulates the flexing of other domains such that flexibility and rigidity are not compromised during transport of large and/or asymmetric cargo.


Assuntos
Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica/métodos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Difusão Dinâmica da Luz , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...