Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621177

RESUMO

The development of catalysts for controlled fragmentation of proteins is a critical undertaking in modern proteomics and biotechnology. {Zr6O8}-based metal-organic frameworks (MOFs) have emerged as promising candidates for catalysis of peptide bond hydrolysis due to their high reactivity, stability, and recyclability. However, emerging evidence suggests that protein hydrolysis mainly occurs on the MOF surface, thereby questioning the need for their highly porous 3D nature. In this work, we show that the discrete and water-soluble [Zr6O4(OH)4(CH3CO2)8(H2O)2Cl3]+ (Zr6) metal-oxo cluster (MOC), which is based on the same hexamer motif found in various {Zr6O8}-based MOFs, shows excellent activity toward selective hydrolysis of equine skeletal muscle myoglobin. Compared to related Zr-MOFs, Zr6 exhibits superior reactivity, with near-complete protein hydrolysis after 24 h of incubation at 60 °C, producing seven selective fragments with a molecular weight in the range of 3-15 kDa, which are of ideal size for middle-down proteomics. The high solubility and molecular nature of Zr6 allow detailed solution-based mechanistic/interaction studies, which revealed that cluster-induced protein unfolding is a key step that facilitates hydrolysis. A combination of multinuclear nuclear magnetic resonance spectroscopy and pair distribution function analysis provided insight into the speciation of Zr6 and the ligand exchange processes occurring on the surface of the cluster, which results in the dimerization of two Zr6 clusters via bridging oxygen atoms. Considering the relevance of discrete Zr-oxo clusters as building blocks of MOFs, the molecular-level understanding reported in this work contributes to the further development of novel catalysts based on Zr-MOFs.

2.
Nat Commun ; 15(1): 3434, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653991

RESUMO

The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal-Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4-6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions.

3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473818

RESUMO

Polyoxotungstate nanoclusters have recently emerged as promising contrast agents for computed tomography (CT). In order to evaluate their clinical potential, in this study, we evaluated the in vitro CT imaging properties, potential toxic effects in vivo, and tissue distribution of monolacunary Wells-Dawson polyoxometalate, α2-K10P2W17O61.20H2O (mono-WD POM). Mono-WD POM showed superior X-ray attenuation compared to other tungsten-containing nanoclusters (its parent WD-POM and Keggin POM) and the standard iodine-based contrast agent (iohexol). The calculated X-ray attenuation linear slope for mono-WD POM was significantly higher compared to parent WD-POM, Keggin POM, and iohexol (5.97 ± 0.14 vs. 4.84 ± 0.05, 4.55 ± 0.16, and 4.30 ± 0.09, respectively). Acute oral (maximum-administered dose (MAD) = 960 mg/kg) and intravenous administration (1/10, 1/5, and 1/3 MAD) of mono-WD POM did not induce unexpected changes in rats' general habits or mortality. Results of blood gas analysis, CO-oximetry status, and the levels of electrolytes, glucose, lactate, creatinine, and BUN demonstrated a dose-dependent tendency 14 days after intravenous administration of mono-WD POM. The most significant differences compared to the control were observed for 1/3 MAD, being approximately seventy times higher than the typically used dose (0.015 mmol W/kg) of tungsten-based contrast agents. The highest tungsten deposition was found in the kidney (1/3 MAD-0.67 ± 0.12; 1/5 MAD-0.59 ± 0.07; 1/10 MAD-0.54 ± 0.05), which corresponded to detected morphological irregularities, electrolyte imbalance, and increased BUN levels.


Assuntos
Ânions , Meios de Contraste , Iohexol , Polieletrólitos , Ratos , Animais , Distribuição Tecidual , Tungstênio , Tomografia Computadorizada por Raios X
4.
Angew Chem Int Ed Engl ; 63(19): e202401940, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408301

RESUMO

The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host-guest stabilization within a coordination cage to enable a novel cavity-directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2- (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water-soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal-oxo clusters in water, which can broaden the scope of their applications.

5.
Small ; 20(25): e2312009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213017

RESUMO

Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.


Assuntos
Compostos de Tungstênio , Compostos de Tungstênio/química , Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Dicroísmo Circular , Biotina/química , Polieletrólitos , Ânions
6.
Chem Soc Rev ; 53(1): 84-136, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38015569

RESUMO

Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais/química , Proteínas
7.
Small ; 20(13): e2307236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974471

RESUMO

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Ácido Acético , Biotecnologia , Água
10.
Sci Rep ; 13(1): 9140, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277558

RESUMO

In this study, we demonstrate for the first time, that a discrete metal-oxo cluster α-/ß-K6P2W18O62 (WD-POM) exhibits superior performance as a computed tomography (CT) contrast agent, in comparison to the standard contrast agent iohexol. A toxicity evaluation of WD-POM was performed according to standard toxicological protocols using Wistar albino rats. The maximum tolerable dose (MTD) of 2000 mg/kg was initially determined after oral WD-POM application. The acute intravenous toxicity of single WD-POM doses (1/3, 1/5, and 1/10 MTD), which are at least fifty times higher than the typically used dose (0.015 mmol W kg-1) of tungsten-based contrast agents, was evaluated for 14 days. The results of arterial blood gas analysis, CO-oximetry status, electrolyte and lactate levels for 1/10 MTD group (80% survival rate) indicated the mixed respiratory and metabolic acidosis. The highest deposition of WD-POM (0.6 ppm tungsten) was found in the kidney, followed by liver (0.15 ppm tungsten), for which the histological analysis revealed morphological irregularities, although the renal function parameters (creatinine and BUN levels) were within the physiological range. This study is the first and important step in evaluating side effects of polyoxometalate nanoclusters, which in recent years have shown a large potential as therapeutics and contrast agents.


Assuntos
Meios de Contraste , Tungstênio , Ratos , Animais , Meios de Contraste/toxicidade , Tungstênio/toxicidade , Tomografia Computadorizada por Raios X/métodos , Rim/diagnóstico por imagem , Iohexol/toxicidade , Ratos Wistar
11.
JACS Au ; 3(4): 978-990, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124292

RESUMO

The latest advances in the study of the reactivity of metal-oxo clusters toward proteins showcase how fundamental insights obtained so far open new opportunities in biotechnology and medicine. In this Perspective, these studies are discussed through the lens of the reactivity of a family of soluble anionic metal-oxo nanoclusters known as polyoxometalates (POMs). POMs act as catalysts in a wide range of reactions with several different types of biomolecules and have promising therapeutic applications due to their antiviral, antibacterial, and antitumor activities. However, the lack of a detailed understanding of the mechanisms behind biochemically relevant reactions-particularly with complex biological systems such as proteins-still hinders further developments. Hence, in this Perspective, special attention is given to reactions of POMs with peptides and proteins showcasing a molecular-level understanding of the reaction mechanism. In doing so, we aim to highlight both existing limitations and promising directions of future research on the reactivity of metal-oxo clusters toward proteins and beyond.

12.
Chem Sci ; 14(20): 5405-5414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234890

RESUMO

Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [V6O13{(OCH2)3C-R}2]2- (V6-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters. However, compared to other metal-oxo cluster types, V6-R clusters have been less extensively explored, which is mainly due to poorly understood synthetic challenges and the limited number of viable post-functionalization strategies. In this work, we present an in-depth investigation of the factors that influence the formation of hybrid hexavanadates (V6-R HPOMs) and leverage this knowledge to develop [V6O13{(OCH2)3CNHCOCH2Cl}2]2- (V6-Cl) as a new and tunable platform for the facile formation of discrete hybrid structures based on metal-oxo clusters in relatively high yields. Moreover, we showcase the versatility of the V6-Cl platform through its post-functionalization via nucleophilic substitution with various carboxylic acids of differing complexity and with functionalities that are relevant in multiple disciplines, such as supramolecular chemistry and biochemistry. Hence, V6-Cl was shown to be a straightforward and versatile starting point for the formation of functional supramolecular structures or other hybrid materials, thereby enabling their exploration in various fields.

13.
Faraday Discuss ; 244(0): 21-38, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37102318

RESUMO

Interactions between the protein Hen Egg White Lysozyme (HEWL) and three different hybrid Anderson-Evans polyoxometalate clusters - AE-NH2 (δ-[MnMo6O18{(OCH2)3CNH2}2]3-), AE-CH3 (δ-[MnMo6O18{(OCH2)3CCH3}2]3-) and AE-Biot (δ-[MnMo6O18{(OCH2)3CNHCOC9H15N2OS}2]3-) - were studied via tryptophan fluorescence spectroscopy and single crystal X-ray diffraction. Quenching of tryptophan fluorescence was observed in the presence of all three hybrid polyoxometalate clusters (HPOMs), but the extent of quenching and the binding affinity were greatly dependent on the nature of the organic groups attached to the cluster. Control experiments further revealed the synergistic effect of the anionic polyoxometalate core and organic ligands towards enhanced protein interactions. Furthermore, the protein was co-crystallised with each of the three HPOMs, resulting in four different crystal structures, thus allowing for the binding modes of HPOM-protein interactions to be investigated with near-atomic precision. All crystal structures displayed a unique mode of binding of the HPOMs to the protein, with both functionalisation and the pH of the crystallisation conditions influencing the interactions. From the crystal structures, it was determined that HPOM-protein non-covalent complexes formed through a combination of electrostatic attraction between the polyoxometalate cluster and positively charged surface regions of HEWL, and direct and water-mediated hydrogen bonds with both the metal-oxo inorganic core and the functional groups of the ligand, where possible. Hence, functionalisation of metal-oxo clusters shows great potential in tuning their interactions with proteins, which is of interest for several biomedical applications.


Assuntos
Triptofano , Água , Cristalografia por Raios X , Água/química
14.
Angew Chem Int Ed Engl ; 62(31): e202303817, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098776

RESUMO

The specific interactions of anionic metal-oxo clusters, known as polyoxometalates (POMs), with proteins can be leveraged for a wide range of analytical and biomedical applications. For example, POMs have been developed as selective catalysts that can induce protein modifications and have also been shown to facilitate protein crystallization, both of which are instrumental in the structural characterization of proteins. POMs can also be used for selective protein separation and enzyme inhibition, which makes them promising therapeutic agents. Hence, understanding POM-protein interactions is essential for the development of POM-based materials and their implementation in several fields. In this Review we summarize in detail the key insights that have been gained so far on POM-protein interactions. Emphasis is also given to hybrid POMs functionalized with organic ligands to prompt further research in this direction owing to the promising recent results on tuning POM-protein interactions through POM functionalization.


Assuntos
Compostos de Tungstênio , Compostos de Tungstênio/química , Proteínas/química , Metais
15.
Nat Commun ; 14(1): 486, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717594

RESUMO

Oxidative modifications of proteins are key to many applications in biotechnology. Metal-catalyzed oxidation reactions efficiently oxidize proteins but with low selectivity, and are highly dependent on the protein surface residues to direct the reaction. Herein, we demonstrate that discrete inorganic ligands such as polyoxometalates enable an efficient and selective protein oxidative cleavage. In the presence of ascorbate (1 mM), the Cu-substituted polyoxometalate K8[Cu2+(H2O)(α2-P2W17O61)], (CuIIWD, 0.05 mM) selectively cleave hen egg white lysozyme under physiological conditions (pH =7.5, 37 °C) producing only four bands in the gel electropherogram (12.7, 11, 10, and 5 kDa). Liquid chromatography/mass spectrometry analysis reveals a regioselective cleavage in the vicinity of crystallographic CuIIWD/lysozyme interaction sites. Mechanistically, polyoxometalate is critical to position the Cu at the protein surface and limit the generation of oxidative species to the proximity of binding sites. Ultimately, this study outlines the potential of discrete, designable metal oxo clusters as catalysts for the selective modification of proteins through radical mechanisms under non-denaturing conditions.


Assuntos
Cobre , Muramidase , Muramidase/metabolismo , Cobre/química , Ligantes , Proteínas/metabolismo , Metais , Oxirredução , Estresse Oxidativo
16.
Chem Sci ; 13(10): 2891-2899, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382468

RESUMO

Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.

17.
Nat Commun ; 13(1): 1284, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277474

RESUMO

The discovery of nanozymes for selective fragmentation of proteins would boost the emerging areas of modern proteomics, however, the development of efficient and reusable artificial catalysts for peptide bond hydrolysis is challenging. Here we report the catalytic properties of a zirconium metal-organic framework, MIP-201, in promoting peptide bond hydrolysis in a simple dipeptide, as well as in horse-heart myoglobin (Mb) protein that consists of 153 amino acids. We demonstrate that MIP-201 features excellent catalytic activity and selectivity, good tolerance toward reaction conditions covering a wide range of pH values, and importantly, exceptional recycling ability associated with easy regeneration process. Taking into account the catalytic performance of MIP-201 and its other advantages such as 6-connected Zr6 cluster active sites, the green, scalable and cost-effective synthesis, and good chemical and architectural stability, our findings suggest that MIP-201 may be a promising and practical alternative to commercially available catalysts for peptide bond hydrolysis.


Assuntos
Estruturas Metalorgânicas , Catálise , Hidrólise , Estruturas Metalorgânicas/química , Peptídeos/química , Zircônio/química
18.
Chemistry ; 28(8): e202104224, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34860460

RESUMO

Despite the enormous importance of insoluble proteins in biological processes, their structural investigation remains a challenging task. The development of artificial enzyme-like catalysts would greatly facilitate the elucidation of their structure since currently used enzymes in proteomics largely lose activity in the presence of surfactants, which are necessary to solubilize insoluble proteins. In this study, the hydrolysis of a fully insoluble protein by polyoxometalate complexes as artificial proteases in surfactant solutions is reported for the first time. The hydrolysis of zein as a model protein was investigated in the presence of Zr(IV) and Hf(IV) substituted Keggin-type polyoxometalates (POMs), (Et2 NH2 )10 [M(α-PW11 O39 )2 ] (M = Zr or Hf), and different concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Selective hydrolysis of the protein upon incubation with the catalyst was observed, and the results indicate that the hydrolytic selectivity and activity of the POM catalysts strongly depends on the concentration of surfactant. The molecular interactions between the POM catalyst and zein in the presence of SDS were explored using a combination of spectroscopic techniques which indicated competitive binding between POM and SDS towards the protein. Furthermore, the formation of micellar superstructures in ternary POM/surfactant/protein solutions has been confirmed by conductivity and Dynamic Light Scattering measurements.


Assuntos
Peptídeo Hidrolases , Compostos de Tungstênio , Ânions , Hidrólise , Polieletrólitos , Tensoativos
19.
Chemistry ; 27(68): 17230-17239, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34761450

RESUMO

The performance of MOFs in catalysis is largely derived from structural features, and much work has focused on introducing structural changes such as defects or ligand functionalisation to boost the reactivity of the MOF. However, the effects of different parameters chosen for the synthesis on the catalytic reactivity of the resulting MOF remains poorly understood. Here, we evaluate the role of metal precursor on the reactivity of Zr-based MOF-808 towards hydrolysis of the peptide bond in the glycylglycine model substrate. In addition, the effect of synthesis temperature and duration has been investigated. Surprisingly, the metal precursor was found to have a large influence on the reactivity of the MOF, surpassing the effect of particle size or number of defects. Additionally, we show that by careful selection of the Zr-salt precursor and temperature used in MOF syntheses, equally active MOF catalysts could be obtained after a 20 minute synthesis compared to 24 h synthesis.


Assuntos
Peptídeos , Catálise , Hidrólise , Tamanho da Partícula , Temperatura
20.
Chem Sci ; 12(31): 10655-10663, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447559

RESUMO

The ability of soluble metal-oxo clusters to specifically interact with protein surfaces makes them attractive as potential inorganic drugs and as artificial enzymes. In particular, metal-substituted polyoxometalates (MS-POMs) are remarkably selective in hydrolyzing a range of different proteins. However, the influence of MS-POMs' redox chemistry on their proteolytic activity remains virtually unexplored. Herein we report a highly site-selective hydrolysis of hemoglobin (Hb), a large tetrameric globular protein, by a Ce(iv)-substituted Keggin polyoxometalate (CeIVK), and evaluate the effect of CeIVK's redox chemistry on its reactivity and selectivity as an artificial protease. At pH 5.0, incubation of Hb with CeIVK resulted in strictly selective protein hydrolysis at six Asp-X bonds, two of which were located in the α-chain (α(Asp75-Leu76) and α(Asp94-Pro95)) and five at the ß-chain (ß(Asp51-Ala52), ß(Asp68-Ser69), ß(Asp78-Asp79), ß(Asp98-Pro99) and ß(Asp128-Phe129)). However, increasing the pH of the reaction mixture to 7.4 decreased the CeIVK hydrolytic reactivity towards Hb, resulting in the cleavage of only one peptide bond (ß(Asp128-Phe129)). Combination of UV-Vis, circular dichroism and Trp fluorescence spectroscopy indicated similar interactions between Hb and CeIVK at both pH conditions; however, 31P NMR spectroscopy showed faster reduction of CeIVK into the hydrolytically inactive CeIIIK form in the presence of protein at pH 7.4. In agreement with these results, careful mapping of all hydrolyzed Asp-X bonds on the protein structure revealed that the lower reactivity toward the α-chain was consistent with the presence of more redox-active amino acids (Tyr and His) in this subunit in comparison with the ß-chain. This points towards a link between the presence of the redox-active sites on the protein surface and efficiency and selectivity of redox-active MS-POMs as artificial proteases. More importantly, the study provides a way to tune the redox and hydrolytic reactivity of MS-POMs towards proteins through adjustment of reaction parameters like temperature and pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...