Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513247

RESUMO

Inhibition of cyclooxygenase-2 (COX-2) has been extensively studied as an approach to reduce proinflammatory markers in acute brain diseases, but the anti-neuroinflammatory role of cyclooxygenase-1 (COX-1) inhibition has been rather neglected. We report that m-terphenylamine derivatives are selective COX-1 inhibitors, able to block microglia inflammatory response and elicit a neuroprotective effect. These compounds were synthesized via a three-component reaction of chalcones, ß-ketoesters, and primary amines, followed by hydrolysis/decarboxylation of the ester group. Together with their synthetic intermediates and some urea derivatives, they were studied as inhibitors of COX-1 and COX-2. The m-terphenylamine derivatives, which were selective COX-1 inhibitors, were also analyzed for their ability to block microglia inflammatory and oxidative response. Compound 3b presented an interesting anti-inflammatory and neuroprotective profile by reducing nitrite release, ROS overproduction, and cell death in organotypic hippocampal cultures subjected to LPS. We thus show that COX-1 inhibition is a promising approach to provide enhanced neuroprotection against acute inflammatory processes, which are crucial in the development of a plethora of acute neurodegenerative injuries.


Assuntos
Microglia , Fármacos Neuroprotetores , Ciclo-Oxigenase 2/metabolismo , Neuroproteção , Inibidores de Ciclo-Oxigenase/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Lipopolissacarídeos/farmacologia
2.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353046

RESUMO

Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1ß and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1ß, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1ß release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.

3.
Nature ; 586(7828): 287-291, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728214

RESUMO

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Assuntos
Transporte de Elétrons , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Sistemas do Segundo Mensageiro , Sódio/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fosfatos de Cálcio/metabolismo , Linhagem Celular Tumoral , Precipitação Química , Humanos , Masculino , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
4.
Br J Pharmacol ; 176(15): 2764-2779, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31074003

RESUMO

BACKGROUND AND PURPOSE: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH: We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS: In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS: TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Lipídeo A/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipídeo A/farmacologia , Lipídeo A/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
Curr Med Chem ; 24(33): 3583-3605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494744

RESUMO

BACKGROUND: Renal disease is a serious health problem, with increasing incidence and prevalence. Oxidative stress and inflammation play a key role in the pathogenesis and progression of renal disease. Therefore, therapeutic approaches to decrease oxidative stress should be of interest. OBJECTIVE: This review aims to provide a comprehensive and updated overview of the protective mechanisms mediated by Nrf2 (nuclear factor erythroid 2-related factor 2), a description of novel compounds that target Nrf2, its effectiveness to prevent renal disease and the on-going clinical trials for this pathological condition. METHODS: We undertook a structured search of bibliographic databases for peer-reviewed research in literature about Nrf2 activators and renal disease. RESULTS: The transcription factor Nrf2 is an emerging regulator of cellular resistance to oxidants and inflammation. Nrf2 controls the basal and induced expression of a couple of cytoprotective and antiinflammatory genes that regulate the physiological and pathophysiological outcomes of oxidant exposure. We have analyzed numerous findings showing that Nrf2 induction protects against oxidative stress and modulates inflammation in acute kidney injury and chronic kidney disease progression. However, few clinical trials have been performed in humans. Recent studies suggested that renoprotective effects of Nrf2 activation are observed at low doses, whereas harmful effects appear at higher concentrations. CONCLUSION: The findings of this review confirm that novel studies are necessary to address whether Nrf2-targeting may be a safe therapeutic approach to decrease renal disease progression in humans.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Descoberta de Drogas , Rim/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Terapia de Alvo Molecular , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos
6.
Redox Biol ; 12: 1040-1051, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28511347

RESUMO

Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to 'deactive' form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Células Endoteliais/metabolismo , Superóxidos/metabolismo , Animais , Bovinos , Hipóxia Celular , Células Cultivadas , Células Endoteliais/citologia , Mitocôndrias/metabolismo , Oxirredução , Proteínas Quinases/metabolismo , Transdução de Sinais
8.
Free Radic Biol Med ; 104: 32-53, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065781

RESUMO

Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.


Assuntos
Isquemia Encefálica/metabolismo , Melatonina/metabolismo , Estresse Oxidativo/fisiologia , Acidente Vascular Cerebral/metabolismo , Antioxidantes/uso terapêutico , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Humanos , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos
9.
Neurotoxicology ; 57: 61-68, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620136

RESUMO

Therapeutic interventions on pathological processes involved in the ischemic cascade, such as oxidative stress, neuroinflammation, excitotoxicity and/or apoptosis, are of urgent need for stroke treatment. Melatonin regulates a large number of physiological actions and its beneficial properties have been reported. The aim of this study was to investigate whether melatonin mediates neuroprotection in rat hippocampal slices subjected to oxygen-glucose-deprivation (OGD) and glutamate excitotoxicity. Thus, we describe here that melatonin significantly reduced the amount of lactate dehydrogenase released in the OGD-treated slices, reverted neuronal injury caused by OGD-reoxygenation in CA1 and CA3 hippocampal regions, restored the reduction of GSH content of the hippocampal slices induced by OGD, and diminished the oxidative stress produced in the reoxygenation period. Furthermore, melatonin afforded maximum protection against glutamate-induced toxicity and reversed the glutamate released almost basal levels, at 10 and 30µM concentration, respectively. Consequently, we propose that melatonin might strongly and positively influence the outcome of brain ischemia/reperfusion.


Assuntos
Antioxidantes/farmacologia , Líquido Extracelular/efeitos dos fármacos , Glucose/deficiência , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Melatonina/farmacologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Variância , Animais , Morte Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Hipocampo/metabolismo , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
10.
Mol Neurobiol ; 53(5): 3030-3045, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25966970

RESUMO

Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.


Assuntos
Agmatina/farmacologia , Comportamento Animal , Depressão/metabolismo , Depressão/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores/metabolismo , Corticosterona , Depressão/tratamento farmacológico , Depressão/patologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imipramina/farmacologia , Imipramina/uso terapêutico , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Neurotransmissores/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Biochem Pharmacol ; 97(4): 463-472, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26232730

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target.


Assuntos
Microglia/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
12.
Neuropharmacology ; 99: 187-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188145

RESUMO

Stopping the ischemic cascade by targeting its components is a potential strategy for acute ischemic stroke treatment. During ischemia and especially over reperfusion, oxidative stress plays a major role in causing neuronal cell death. Melatonin has been previously reported to provide neuroprotective effects in in vivo models of stroke by a mechanism that implicates melatonin receptors. In this context, this study was planned to test the potential neuroprotective effects of the novel melatonin MT1/MT2 receptor agonist, Neu-P11, against brain ischemia in in vitro and in vivo models, and to elucidate its underlying mechanism of action. Neu-P11 proved to be a good antioxidant, to protect against glutamate-induced excitotoxicity and oxygen and glucose deprivation in hippocampal slices, and to reduce infarct volume in an in vivo stroke model. Regarding its mechanism of action, the protective effect of Neu-P11 was reverted by luzindole (melatonin receptor antagonist), AG490 (JAK2 inhibitor), LY294002 (PI3/AKT inhibitor) and PD98059 (MEK/ERK1/2 inhibitor). In conclusion, Neu-P11 affords neuroprotection against brain ischemia in in vitro and in vivo models by activating a pro-survival signaling pathway that involves melatonin receptors, JAK/STAT, PI3K/Akt and MEK/ERK1/2.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Piranos/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glucose/deficiência , Humanos , Masculino , Melatonina/análogos & derivados , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Técnicas de Cultura de Tecidos
13.
Biochem Pharmacol ; 97(4): 473-481, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26212551

RESUMO

Subchronic oxidative stress and inflammation are being increasingly implicated in the pathogenesis of numerous diseases, such as Alzheimer's or Parkinson's disease. This study was designed to evaluate the potential protective role of α7 nicotinic receptor activation in an in vitro model of neurodegeneration based on subchronic oxidative stress. Rat organotypic hippocampal cultures (OHCs) were exposed for 4 days to low concentration of lipopolysaccharide (LPS) and the complex III mitochondrial blocker, antimycin-A. Antimycin-A (0.1µM) and lipopolysaccharide (1ng/ml) caused low neurotoxicity on their own, measured as propidium iodide fluorescence in CA1 and CA3 regions. However, their combination (LPS/AA) caused a greater detrimental effect, in addition to mitochondrial depolarization, overproduction of reactive oxygen species (ROS) and Nox4 overexpression. Antimycin-A per se increased ROS and mitochondrial depolarization, although these effects were significantly higher when combined with LPS. More interesting was the finding that exposure of OHCs to the combination of LPS/AA triggered aberrant protein aggregation, measured as thioflavin S immunofluorescence. The α7 nicotinic receptor agonist, PNU282987, prevented the neurotoxicity and the pathological hallmarks observed in the LPS/AA subchronic toxicity model (oxidative stress and protein aggregates); these effects were blocked by α-bungarotoxin and tin protoporphyrin, indicating the participation of α7 nAChRs and heme-oxygenase I induction. In conclusion, subchronic exposure of OHCs to low concentration of antimycin-A plus LPS reproduced pathological features of neurodegenerative disorders. α7 nAChR activation ameliorated these alterations by a mechanism involving heme-oxygenase I induction.


Assuntos
Indução Enzimática/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo/citologia , Estresse Oxidativo/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Antimicina A/administração & dosagem , Antimicina A/farmacologia , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Indução Enzimática/fisiologia , Heme Oxigenase (Desciclizante)/genética , Lipopolissacarídeos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas
14.
Mol Nutr Food Res ; 59(9): 1690-700, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26047311

RESUMO

SCOPE: We have studied if curcumin can protect glial cells under an oxidative stress and inflammatory environment, which is known to be deleterious in neurodegeneration. METHODS AND RESULTS: Primary rat glial cultures exposed to the combination of an oxidative (rotenone/oligomycin A) and a proinflammatory LPS stimuli reduced by 50% glial viability. Under these experimental conditions, curcumin afforded significant glial protection and reduction of reactive oxygen species; these effects were blocked by the HO-1 inhibitor tin protoporphyrin-IX (SnPP). These findings correlate with the observation that curcumin induced the antioxidative protein HO-1. Most interesting was the observation that the glial protective effects related to HO-1 induction were microglial specific as shown in glial cultures from LysM(Cre) Hmox(∆/∆) mice where curcumin lost its protective effect. Under LPS conditions, curcumin reduced the microglial proinflammatory markers iNOS and tumor necrosis factor, but increased the anti-inflammatory cytokine IL4. Analysis of the microglial phenotype showed that curcumin favored a ramified morphology toward a microglial alternative activated state against LPS insult also by a HO-1-dependent mechanism. CONCLUSION: The curry constituent curcumin protects glial cells and promotes a microglial anti-inflammatory phenotype by a mechanism that implicates HO-1 induction; these effects may have impact on brain protection under oxidative and inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Curcumina/farmacologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Metaloporfirinas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Protoporfirinas/toxicidade , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Br J Pharmacol ; 172(7): 1807-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25425158

RESUMO

BACKGROUND AND PURPOSE: Neurodegenerative diseases are a major problem afflicting ageing populations; however, there are no effective treatments to stop their progression. Oxidative stress and neuroinflammation are common factors in their pathogenesis. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of oxidative stress, and melatonin is an endogenous hormone with antioxidative properties that reduces its levels with ageing. We have designed a new compound that combines the effects of melatonin with Nrf2 induction properties, with the idea of achieving improved neuroprotective properties. EXPERIMENTAL APPROACH: Compound ITH12674 is a hybrid of melatonin and sulforaphane designed to exert a dual drug-prodrug mechanism of action. We obtained the proposed hybrid in a single step. To test its neuroprotective properties, we used different in vitro models of oxidative stress related to neurodegenerative diseases and brain ischaemia. KEY RESULTS: ITH12674 showed an improved neuroprotective profile compared to that of melatonin and sulforaphane. ITH12674 (i) mediated a concentration-dependent protective effect in cortical neurons subjected to oxidative stress; (ii) decreased reactive oxygen species production; (iii) augmented GSH concentrations in cortical neurons; (iv) enhanced the Nrf2-antioxidant response element transcriptional response in transfected HEK293T cells; and (v) protected organotypic cultures of hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation from stress by increasing the expression of haem oxygenase-1 and reducing free radical production. CONCLUSION AND IMPLICATIONS: ITH12674 combines the signalling pathways of the parent compounds to improve its neuroprotective properties. This opens a new line of research for such hybrid compounds to treat neurodegenerative diseases.


Assuntos
Isotiocianatos/farmacologia , Melatonina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pró-Fármacos/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Melatonina/farmacologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sulfóxidos
16.
ACS Chem Neurosci ; 6(2): 288-96, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25393881

RESUMO

We have investigated the protective effects of ITH91/IQM157, a hybrid of melatonin and N,N-dibenzyl(N-methyl)amine, in an in vitro model of Alzheimer's disease (AD)-like pathology that combines amyloid beta (Aß) and tau hyperphosphorylation induced by okadaic acid (OA), in the human neuroblastoma cell line SH-SY5Y. Combination of subtoxic concentrations of Aß and OA caused a significant toxicity of 40% cell death, which mainly was apoptotic; this effect was accompanied by retraction of the cells' prolongations and accumulation of thioflavin-S stained protein aggregates. In this toxicity model, ITH91/IQM157 (1-1000 nM) reduced cell death measured as MTT reduction; at 100 nM, it prevented apoptosis, retraction of prolongations, and Aß aggregates. The protective actions of ITH91/IQM157 were blocked by mecamylamine, luzindol, chelerythrine, PD98059, LY294002, and SnPP. We show that the combination of melatonin with a fragment endowed with AChE inhibition in a unique chemical structure, ITH91/IQM157, can reduce neuronal cell death induced by Aß and OA by a signaling pathway that implicates both nicotinic and melatonin receptors, PKC, Akt, ERK1/2, and induction of hemoxygenase-1.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Melatonina/farmacologia , Metilaminas/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Inibidores da Colinesterase/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ácido Okadáico/toxicidade , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/fisiologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Melatonina/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas tau/metabolismo
17.
J Med Chem ; 57(10): 4313-23, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24754640

RESUMO

C5-unsubstituted-C6-aryl-1,4-dihydropyridines were prepared by a CAN-catalyzed multicomponent reaction from chalcones, ß-dicarbonyl compounds, and ammonium acetate. These compounds were able to block Ca(2+) entry after a depolarizing stimulus and showed an improved Cav1.3/Cav1.2 selectivity in comparison with nifedipine. Furthermore, they were able to protect neuroblastoma cells against Ca(2+) overload and oxidative stress models. Their selectivity ratio makes them highly interesting for the treatment of neurological disorders where Ca(2+) dyshomeostasis and high levels of oxidative stress have been demonstrated. Furthermore, their low potency toward the cardiovascular channel subtype makes them safer by reducing their probable side effects, in comparison to classical 1,4-dihydropyridines. Some compounds afforded good protective profile in a postincubation model that simulates the real clinical situation of ictus patients, offering a therapeutic window of opportunity of great interest for patient recovery after a brain ischemic episode. Good activities were also found in acute ischemia/reperfusion models of oxygen and glucose deprivation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Canais de Cálcio Tipo L/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Fármacos Neuroprotetores/síntese química , Traumatismo por Reperfusão/prevenção & controle , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Di-Hidropiridinas/farmacologia , Hipocampo/irrigação sanguínea , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Endogâmicos WKY
18.
J Pineal Res ; 56(2): 204-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24350834

RESUMO

Melatonin has been widely studied as a protective agent against oxidative stress. However, the molecular mechanisms underlying neuroprotection in neurodegeneration and ischemic stroke are not yet well understood. In this study, we evaluated the neuroprotective/antioxidant mechanism of action of melatonin in organotypic hippocampal cultures (OHCs) as well as in photothrombotic stroke model in vivo. Melatonin (0.1, 1, and 10 µM) incubated postoxygen and glucose deprivation (OGD) showed a concentration-dependent protection; maximum protection was achieved at 10 µM (90% protection). Next, OHCs were exposed to 10 µM melatonin at different post-OGD times; the protective effect of melatonin was maintained at 0, 1, and 2 hr post-OGD treatment, but it was lost at 6 hr post-OGD. The protective effect of melatonin and the reduction in OGD-induced ROS were prevented by luzindole (melatonin antagonist) and α-bungarotoxin (α-Bgt, a selective α7 nAChR antagonist). In Nrf2 knockout mice, the protective effect of melatonin was reduced by 40% compared with controls. Melatonin, incubated 0, 1, and 2 hr post-OGD, increased the expression of heme oxygenase-1 (HO-1), and this overexpression was prevented by luzindole and α-bungarotoxin. Finally, administration of 15 mg/kg melatonin following the induction of photothrombotic stroke in vivo, reduced infarct size (50%), and improved motor skills; this effect was partially lost in 0.1 mg/kg methyllycaconitine (MLA, selective α7 nAChR antagonist)-treated mice. Taken together, these results demonstrate that postincubation of melatonin provides a protective effect that, at least in part, depends on nicotinic receptor activation and overexpression of HO-1.


Assuntos
Heme Oxigenase-1/metabolismo , Isquemia/metabolismo , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Região CA1 Hipocampal/citologia , Linhagem Celular Tumoral , Células Cultivadas , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Trombose/metabolismo
19.
J Neurochem ; 126(4): 437-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23713463

RESUMO

Guanosine (GUO) is an endogenous modulator of glutamatergic excitotoxicity and has been shown to promote neuroprotection in in vivo and in vitro models of neurotoxicity. This study was designed to understand the neuroprotective mechanism of GUO against oxidative damage promoted by oxygen/glucose deprivation and reoxygenation (OGD). GUO (100 µM) reduced reactive oxygen species production and prevented mitochondrial membrane depolarization induced by OGD. GUO also exhibited anti-inflammatory actions as inhibition of nuclear factor kappa B activation and reduction of inducible nitric oxide synthase induction induced by OGD. These GUO neuroprotective effects were mediated by adenosine A1 receptor, phosphatidylinositol-3 kinase and MAPK/ERK. Furthermore, GUO recovered the impairment of glutamate uptake caused by OGD, an effect that occurred via a Pertussis toxin-sensitive G-protein-coupled signaling, blockade of adenosine A2A receptors (A2A R), but not via A1 receptor. The modulation of glutamate uptake by GUO also involved MAPK/ERK activation. In conclusion, GUO, by modulating adenosine receptor function and activating MAPK/ERK, affords neuroprotection of hippocampal slices subjected to OGD by a mechanism that implicates the following: (i) prevention of mitochondrial membrane depolarization, (ii) reduction of oxidative stress, (iii) regulation of inflammation by inhibition of nuclear factor kappa B and inducible nitric oxide synthase, and (iv) promoting glutamate uptake.


Assuntos
Encefalite , Guanosina/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Hipóxia Encefálica , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Glucose/farmacologia , Ácido Glutâmico/farmacocinética , Guanosina/farmacologia , Hipocampo/citologia , Hipóxia Encefálica/tratamento farmacológico , Hipóxia Encefálica/imunologia , Hipóxia Encefálica/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Oxigênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptor A1 de Adenosina/metabolismo , Sinaptotagminas , Trítio
20.
Psychoneuroendocrinology ; 38(10): 2010-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23623252

RESUMO

A causative relationship between inflammation and depression is gradually gaining consistency. Because Nrf2 participates in inflammation, we hypothesized that Nrf2 could play a role in depressive disorders. In this study, we have observed that Nrf2 deletion in mice results in: (i) a depressive-like behavior evaluated as an increase in the immobility time in the tail-suspension test and by a decrease in the grooming time in the splash test, (ii) reduced levels of dopamine and serotonin and increased levels of glutamate in the prefrontal cortex, (iii) altered levels of proteins associated to depression such as VEGF and synaptophysin and (iv) microgliosis. Furthermore, treatment of Nrf2 knockout mice with the anti-inflammatory drug rofecoxib reversed their depressive-like behavior, while induction of Nrf2 by sulforaphane, in an inflammatory model of depression elicited by LPS, afforded antidepressant-like effects. In conclusion, our results indicate that chronic inflammation due to a deletion of Nrf2 can lead to a depressive-like phenotype while induction of Nrf2 could become a new and interesting target to develop novel antidepressive drugs.


Assuntos
Transtorno Depressivo/genética , Inflamação/genética , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Anti-Inflamatórios/metabolismo , Comportamento Animal/fisiologia , Transtorno Depressivo/sangue , Dopamina/sangue , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Serotonina/sangue , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...