Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 60(3): 377-392, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905215

RESUMO

This study examined the application of slim-hole nuclear magnetic resonance (NMR) tools to estimate hydraulic conductivity (KNMR ) in an unconsolidated aquifer that contains a range of grain sizes (silt to gravel) and high and variable magnetic susceptibilities (MS) (10-4 to 10-2 SI). A K calibration dataset was acquired at 1-m intervals in three fully screened wells, and compared to KNMR estimates using the Schlumberger-Doll research (SDR) equation with published empirical constants developed from previous studies in unconsolidated sediments. While KNMR using published constants was within an order of magnitude of K, the agreement, overprediction, or underprediction of KNMR varied with the MS distribution in each well. An examination of the effects of MS on NMR data and site-specific empirical constants indicated that the exponent on T2ML (n-value in the SDR equation, representing the diffusion regime) was found to have the greatest influence on KNMR estimation accuracy, while NMR porosity did not improve the prediction of K. KNMR was further improved by integrating an MS log into the NMR analyses. A first approach detrended T2ML for the effects of MS prior to calculating KNMR , and a second approach introduced an MS term into the SDR equation. Both were found to produce similar refinements of KNMR in intervals of elevated MS. This study found that low frequency NMR logging with short echo times shows promise for sites with moderate to elevated MS levels, and recommends a workflow that examines parameter relationships and integrates MS logs into the estimation of KNMR .


Assuntos
Água Subterrânea , Movimentos da Água , Calibragem , Água Subterrânea/análise , Espectroscopia de Ressonância Magnética , Porosidade
2.
Ground Water ; 49(4): 534-47, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20880040

RESUMO

Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.


Assuntos
Fluxômetros , Hidrodinâmica , Movimentos da Água , Permeabilidade , Ciclo Hidrológico
3.
Ground Water ; 45(2): 158-67, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335480

RESUMO

Human activities, whether agricultural, industrial, commercial, or domestic, can contribute to ground water quality deterioration. In order to protect the ground water exploited by a production well, it is essential to develop a good knowledge of the flow system and to adequately delineate the area surrounding the well within which potential contamination sources should be managed. Many methods have been developed to delineate such a wellhead protection area (WHPA). The integration of more information on the geologic and hydrogeologic characteristics of the study area increases the precision of any given WHPA delineation method. From a practical point of view, the WHPA delineation methods allowing the simplest and least expensive integration of the available information should be favored. This paper presents a comparative study in which nine different WHPA delineation methods were applied to a well and a spring in an unconfined granular aquifer and to a well in a confined highly fractured rock aquifer. These methods range from simple approaches to complex computer models. Hydrogeological mapping and numerical modeling with MODFLOW-MODPATH were used as reference methods to respectively compare the delineation of the zone of contribution and the zone of travel obtained from the various WHPA methods. Although applied to simple ground water flow systems, these methods provided a relatively wide range of results. To allow a realistic delineation of the WHPA in aquifers of variable geometry, a WHPA delineation method should ensure a water balance and include observed or calculated regional flow characteristics.


Assuntos
Água , Padrões de Referência , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...