Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 10005-10021, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571213

RESUMO

Edge illumination x-ray phase contrast imaging (XPCI) provides increased contrast for low absorbing materials compared to attenuation images and sheds light on the material microstructure through dark field contrast. To apply XPCI in areas such as non-destructive testing and inline inspection, where scanned samples are increasingly compared to simulated reference images, accurate and efficient simulation software is required. However, currently available simulators rely on expensive Monte Carlo techniques or wave-optics frameworks, resulting in long simulation times. Furthermore, these simulators are often not optimized to work with computer-aided design (CAD) models, a common and memory-efficient method to represent manufactured objects, hindering their integration in an inspection pipeline. In this work, we address these shortcomings by introducing an edge illumination XPCI simulation framework built upon the recently developed CAD-ASTRA toolbox. CAD-ASTRA allows for the efficient simulation of x-ray projections from CAD models through GPU-accelerated ray tracing and supports ray refraction in a geometric optics framework. The edge illumination implementation is validated and its performance is benchmarked against GATE, a state-of-the-art Monte Carlo simulator, revealing a simulation speed increase of up to three orders of magnitude, while maintaining high accuracy in the resulting images.

2.
Appl Opt ; 62(17): F31-F40, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707128

RESUMO

Terahertz (THz) computed tomography is an emerging nondestructive and non-ionizing imaging method. Most THz reconstruction methods rely on the Radon transform, originating from x-ray imaging, in which x rays propagate in straight lines. However, a THz beam has a finite width, and ignoring its shape results in blurred reconstructed images. Moreover, accounting for the THz beam model in a straightforward way in an iterative reconstruction method results in extreme demands in memory and in slow convergence. In this paper, we propose an efficient iterative reconstruction that incorporates the THz beam shape, while avoiding the above disadvantages. Both simulation and real experiments show that our approach results in improved resolution recovery in the reconstructed image. Furthermore, we propose a suitable preconditioner to improve the convergence speed of our reconstruction.

3.
J Am Chem Soc ; 132(41): 14437-46, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20866074

RESUMO

A key feature of organic π-conjugated materials is the strong connection between their electronic and geometric structures. In particular, it has been recently demonstrated that nonlocal electron-vibration (electron-phonon) interactions, which are related to the modulation of the electronic couplings (transfer integrals) between adjacent molecules by lattice vibrations, play an important role in the charge-transport properties of organic semiconductors. Here, we use density functional theory calculations and molecular mechanics simulations to estimate the strength of these nonlocal electron-vibration couplings in oligoacene crystals as a function of molecular size from naphthalene through pentacene. The effect of each optical vibrational mode on the electronic couplings is evaluated quantitatively. The results point to a very strong coupling to both intermolecular vibrational modes and intramolecular (including high-frequency) modes in all studied systems. Importantly, our results underline that the amount of relaxation energy associated with nonlocal electron-phonon coupling decreases as the size of the molecule increases. This work establishes an original relationship between chemical structure and nonlocal vibrational coupling in the description of charge transport in organic semiconductor crystals.

4.
Langmuir ; 22(15): 6555-61, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16830997

RESUMO

Chemically induced rearrangements of amphifunctional molecules have been demonstrated using strong nonuniform electric fields (10(8)-10(10) V m(-1)) induced in the vicinity of nanoscale asperities. Electrostatic interactions utilizing these rearrangements of alkylthiolates assembled on Au(111) result in the nanopatterning of raised nanostructure (1.5-9 nm high, 15-100 nm wide) arrays on a second time scale by manipulating an atomic force microscope (AFM) tip above the monolayer. It is suspected that, as a result of the oxidative cleavage initiated by a weak bias of the tip, the S end of the alkylthiolate chain carrying a sulfenium cation is attracted to the (lifting) tip, forming bi- and higher-layer structures in the vicinity of the tip apex. Stabilization of the multiple-layered structures is accomplished via mutual attraction and entanglement of hydrocarbon chains. The rearrangements suggest a novel and general approach for nanoscale architecture in self-assembled systems.

5.
J Chem Phys ; 123(8): 084705, 2005 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16164319

RESUMO

We apply nonlocal density-functional formalism to describe an equilibrium distribution of the waterlike fluid in the asymmetric nanoscale junction presenting an atomic force microscope tip dwelling above an arbitrary surface. The hydrogen bonding dominating in intermolecular attraction is modeled as a square-well potential with two adjustable parameters (energy and length) characterizing well's depth and width. A liquid meniscus formed inside the nanoscale junction is explicitly described for different humidity. Furthermore, we suggest a simple approach using polymolecular adsorption isotherms for the evaluation of an energetic parameter characterizing fluid (water) attraction to substrate. This model can be easily generalized for more complex geometries and effective intermolecular potentials. Our study establishes a framework for the density-functional description of fluid with orientational anisotropy induced by nonuniform external electric field.

6.
Nat Mater ; 2(7): 468-72, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12819776

RESUMO

The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1-100 nm) and submicrometre (100-1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics, data storage, optoelectronics, displays, sacrificial templates and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography), photolithography, electron-beam lithography, block-copolymer templating and dip-pen lithography, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique--electrostatic nanolithography using atomic force microscopy--that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (10(2)-10(5) nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip-film contact.


Assuntos
Microscopia de Força Atômica , Nanotecnologia , Polímeros , Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...