Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 18(1): 198, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29065907

RESUMO

BACKGROUND: Genome duplication has played a pivotal role in the evolution of many eukaryotic lineages, including the vertebrates. A relatively recent vertebrate genome duplication is that in Xenopus laevis, which resulted from the hybridization of two closely related species about 17 million years ago. However, little is known about the consequences of this duplication at the level of the genome, the epigenome, and gene expression. RESULTS: The X. laevis genome consists of two subgenomes, referred to as L (long chromosomes) and S (short chromosomes), that originated from distinct diploid progenitors. Of the parental subgenomes, S chromosomes have degraded faster than L chromosomes from the point of genome duplication until the present day. Deletions appear to have the largest effect on pseudogene formation and loss of regulatory regions. Deleted regions are enriched for long DNA repeats and the flanking regions have high alignment scores, suggesting that non-allelic homologous recombination has played a significant role in the loss of DNA. To assess innovations in the X. laevis subgenomes we examined p300-bound enhancer peaks that are unique to one subgenome and absent from X. tropicalis. A large majority of new enhancers comprise transposable elements. Finally, to dissect early and late events following interspecific hybridization, we examined the epigenome and the enhancer landscape in X. tropicalis × X. laevis hybrid embryos. Strikingly, young X. tropicalis DNA transposons are derepressed and recruit p300 in hybrid embryos. CONCLUSIONS: The results show that erosion of X. laevis genes and functional regulatory elements is associated with repeats and non-allelic homologous recombination and furthermore that young repeats have also contributed to the p300-bound regulatory landscape following hybridization and whole-genome duplication.


Assuntos
Epigênese Genética , Genoma , Tetraploidia , Xenopus laevis/genética , Animais , Cromatina/metabolismo , Deleção Cromossômica , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Expressão Gênica , Hibridização Genética , Pseudogenes , Xenopus
2.
Nature ; 538(7625): 336-343, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762356

RESUMO

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Tetraploidia , Xenopus laevis/genética , Animais , Cromossomos/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Diploide , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Cariótipo , Anotação de Sequência Molecular , Mutagênese/genética , Pseudogenes , Xenopus/genética
3.
Biochim Biophys Acta ; 1849(6): 626-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857441

RESUMO

The earliest steps of embryonic development involve important changes in chromatin and transcription factor networks, which are orchestrated to establish pluripotent cells that will form the embryo. DNA methylation, histone modifications, the pluripotency regulatory network of transcription factors, maternal factors and newly translated proteins all contribute to these transitions in dynamic ways. Moreover, these dynamics are linked to the onset of zygotic transcription. We will review recent progress in our understanding of chromatin state and regulation of gene expression in the context of embryonic development in vertebrates, in particular mouse, Xenopus and zebrafish. We include work on mouse embryonic stem cells and highlight work that illustrates how early embryonic dynamics establish gene regulatory networks and the state of pluripotency.


Assuntos
Cromatina/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Células-Tronco Pluripotentes , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Fatores de Transcrição/genética , Xenopus/genética , Xenopus/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
BMC Genomics ; 14: 762, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24195446

RESUMO

BACKGROUND: Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. RESULTS: To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. CONCLUSIONS: These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.


Assuntos
Embrião não Mamífero/metabolismo , RNA Mensageiro/genética , Xenopus/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma , Xenopus/embriologia , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...