Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(12): 103457, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917893

RESUMO

Understanding the ripening of two-dimensional (2D) colloidal nanocrystals (NCs) is important for the controllable synthesis of NCs with desired morphology and properties. In this study, we systematically investigate the ripening behavior of the 2D CdSe NCs in the presence of a short-chain acetate ligand and a long-chain oleate ligand. We find that a low acetate/oleate ratio, a low Cd/Se ratio, and a low monomer concentration help in the ripening of the 2D NCs to form 0D NCs. Moreover, a porous nanosheet intermediate is observed when there is a high Cd/Se ratio, whereas in the case of a low Cd/Se ratio, the ripening starts from the edge of the nanosheets, resulting in a saw-like nanosheet intermediate. These findings provide necessary insights into the growth and ripening of 2D CdSe NCs that allow for the controlled synthesis of 0D and 2D CdSe NCs.

2.
ACS Cent Sci ; 5(6): 1017-1023, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31263761

RESUMO

Two-dimensional (2D) colloidal CdSe nanocrystals (NCs) with precise atomic-scale thickness have attracted intensive attention in recent years due to their optical properties and quantum confinement effects originating from their particular band structure. Here, we report a solution-based and template-free protocol to synthesize CdSe nanotubes (NTs) having 3-6 walls, each of which has 3.5 molecular monolayers. Their crystal structure is zincblende, with Cd-terminated {100} planes at the top and bottom surfaces of each wall, which are passivated by short-chain acetate ligands. After verifying the prominent role of the acetate ligand for NT synthesis, we elucidated the formation mechanism of these NTs. It starts by heterogeneous nucleation of 2D plateletlike nanoseeds from the amorphous Cd precursor matrix, followed by the growth via lateral and angular attachment of nanoplatelet building blocks into curved nanosheets, eventually resulting in NTs with sharp absorption and photoluminescence peak at around 460 nm. Moreover, the NTs show remarkable visible-light photocatalytic activity, as demonstrated by the reduction of the reddish Rhodamine B into its leuco form with a conversion rate of 92% in 1 min.

3.
Lab Chip ; 12(17): 3111-6, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22766615

RESUMO

We study the droplet-based synthesis of fluorescent silica nanoparticles (50-350 nm size) in a microfluidic chip. Fluorescein-isothiocyanate (FITC) dye is first chemically linked to aminopropyl triethoxysilane (APTES) in ethanol and this reaction product is subsequently mixed with tetraethyl orthosilicate (TEOS) to yield a fluorescent silicon alkoxide precursor solution. The latter reacts with an aqueous ethanol-ammonia hydrolysing mixture inside droplets, forming fluorescent silica nanoparticles. The droplets are obtained by pinching-off side-by-side flowing streams of alkoxide solution/hydrolysing mixture on a microfluidic chip using a Fluorinert oil continuous phase flow. Synthesis in droplets leads to a faster reaction and allows drastically improved nanoparticle size uniformity (down to 3% relative standard deviation for 350 nm size particles) when compared to conventional bulk synthesis methods, thanks to the precise control of reagent concentrations and reaction times offered by the microfluidic format. Incorporating FITC inside silica nanoparticles using our method leads to reduced dye leakage and increases the dye's stability, as evidenced by a reduced photochemical bleaching compared to a pure FITC solution.

4.
Langmuir ; 27(8): 4380-5, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21417232

RESUMO

We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles.

5.
Nat Nanotechnol ; 3(10): 589-94, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18838996

RESUMO

Nanoparticles play an important role in chemical and biological sciences due to their ability to bind and concentrate many molecules on their surface. Polymers and silica are widely used to make nanoparticles, but efforts to make nanoparticles from borosilicate glass--which exhibits high tolerance to chemicals and solvents, combined with excellent mechanical and thermal stability--have proved unsuccessful. Here we show that borosilicate nanoparticles (100-500 nm in size) can be synthesized by simply mixing a silicon-boron binary oxide solution, prepared using non-aqueous organic solvents, with water. This induces a vigorous exothermic phase separation in which borosilicate nanoparticles burst out of a silica phase. In addition to potential applications in the life sciences, monodisperse borosilicate particles could also have applications in the production of photonic bandgap devices with high optical contrast, contrast agents for ultrasonic microscopy or chemical filtration membranes.


Assuntos
Compostos de Boro/química , Nanopartículas Metálicas/química , Transição de Fase , Silicatos/química , Transferência de Energia , Esterificação , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...