Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202306196, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37395384

RESUMO

Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among gas-phase products. Deactivated [Fe]zeolites can be regenerated by burning coke in air. In situ X-ray absorption spectroscopy demonstrates that the isolated Fe3+ centers in zeolite framework of fresh catalysts are reduced during the reaction to the active sites, including Fe2+ species and Fe (oxy)carbides dispersed in zeolite pores. Photoelectron photoion coincidence spectroscopy results show that methyl radicals are the reaction intermediates formed upon methane activation. Ethane is formed by methyl radical coupling, followed by its dehydrogenation to ethylene. Based on the observation of intermediates including allene, vinylacetylene, 1,3-butadiene, 2-butyne, and cyclopentadiene over [Fe]MFI, a reaction network is proposed leading to polyaromatic species. Such reaction intermediates are not observed over the small-pore [Fe]CHA, where ethylene and ethane are the only gas-phase products.

2.
Science ; 380(6650): 1174-1179, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319196

RESUMO

The catalytic performance of heterogeneous catalysts can be tuned by modulation of the size and structure of supported transition metals, which are typically regarded as the active sites. In single-atom metal catalysts, the support itself can strongly affect the catalytic properties. Here, we demonstrate that the size of cerium dioxide (CeO2) support governs the reactivity of atomically dispersed palladium (Pd) in carbon monoxide (CO) oxidation. Catalysts with small CeO2 nanocrystals (~4 nanometers) exhibit unusually high activity in a CO-rich reaction feed, whereas catalysts with medium-size CeO2 (~8 nanometers) are preferred for lean conditions. Detailed spectroscopic investigations reveal support size-dependent redox properties of the Pd-CeO2 interface.

3.
Angew Chem Int Ed Engl ; 61(23): e202200434, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35303388

RESUMO

Aiming at knowledge-driven design of novel metal-ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well-defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low-temperature activity is associated with sub-oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi-technique operando approach for establishing structure-activity relationships of technical catalysts.

4.
ACS Catal ; 11(8): 4880-4892, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33898079

RESUMO

The hydrogenation of CO2 to CH3OH is an important reaction for future renewable energy scenarios. Herein, we compare Cu/ZnO, Cu/CeO2, and Cu/ZnO-CeO2 catalysts prepared by flame spray pyrolysis. The Cu loading and support composition were varied to understand the role of Cu-ZnO and Cu-CeO2 interactions. CeO2 addition improves Cu dispersion with respect to ZnO, owing to stronger Cu-CeO2 interactions. The ternary Cu/ZnO-CeO2 catalysts displayed a substantially higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison with a commercial Cu-ZnO catalyst is also confirmed for Cu/ZnO-CeO2 catalyst prepared with high Cu loading (∼40 wt %). In situ IR spectroscopy was used to probe metal-support interactions in the reduced catalysts and to gain insight into CO2 hydrogenation over the Cu-Zn-Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu-CeO2 and Cu-ZnO interactions. Cu-ZnO interactions promote CO2 hydrogenation to CH3OH by Zn-decorated Cu active sites. Cu-CeO2 interactions inhibit the reverse water-gas shift reaction due to a high formate coverage of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning metal-support interactions to develop improved Cu-based catalysts for CO2 hydrogenation to CH3OH.

5.
Angew Chem Int Ed Engl ; 58(21): 7068-7072, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30900346

RESUMO

Non-oxidative dehydroaromatization of methane over Mo/ZSM-5 zeolite catalysts is a promising reaction for the direct conversion of abundant natural gas into liquid aromatics. Rapid coking deactivation hinders the practical implementation of this technology. Herein, we show that catalyst productivity can be improved by nearly an order of magnitude by raising the reaction pressure to 15 bar. The beneficial effect of pressure was found for different Mo/ZSM-5 catalysts and a wide range of reaction temperatures and space velocities. High-pressure operando X-ray absorption spectroscopy demonstrated that the structure of the active Mo-phase was not affected by operation at elevated pressure. Isotope labeling experiments, supported by mass-spectrometry and 13 C nuclear magnetic resonance spectroscopy, indicated the reversible nature of coke formation. The improved performance can be attributed to faster coke hydrogenation at increased pressure, overall resulting in a lower coke selectivity and better utilization of the zeolite micropore space.

6.
Angew Chem Int Ed Engl ; 57(4): 1016-1020, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29181863

RESUMO

Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...