Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 769, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886257

RESUMO

BACKGROUND: Sleep and stress interact bidirectionally by acting on brain circuits that affect metabolism. Sleep and its alterations have impact on blood leptin levels, metabolic hormone that regulates appetite. Brain expresses the receptors for the peptide hormone leptin produced from adipocytes. The hypothalamic orexin neurons are low during sleep and active when awake, influenced by a complex interaction with leptin. Thymoquinone was found to be the major bioactive component of Nigella sativa. The aim of this study was to study the role of thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. METHODS AND RESULTS: 30 adult male Wistar rats were divided into 5 groups with 6 animals in each group: Control; Thymoquinone (TQ); Corn oil; Chronic Sleep restriction (CSR); and CSR + TQ. After 30 days, behavioral analysis, antioxidant, lipid profile, glucose level, liver and kidney function test, neurotransmitters, neuropeptides, and mRNA expression in in vivo studies were also assessed and pharmacokinetic and docking were done for thymoquinone. Thymoquinone has also shown good binding affinity to the target proteins. CSR has induced oxidative stress in the discrete brain regions and plasma. Current study has shown many evidences that sleep restriction has altered the neurobehavioral, antioxidant status, lipid profile, neurotransmitters, neuropeptide levels, and feeding behavior which damage the Orexin-leptin system which regulates the sleep and feeding that leads to metabolic dysfunction. CONCLUSION: The potentiality of Thymoquinone was revealed in in silico studies, and its action in in vivo studies has proved its effectiveness. The study concludes that Thymoquinone has exhibited its effect by diminishing the metabolic dysfunction by its neuroprotective, antioxidant, and hypolipidemic properties.


Assuntos
Benzoquinonas , Encéfalo , Leptina , Ratos Wistar , Transdução de Sinais , Privação do Sono , Animais , Benzoquinonas/farmacologia , Masculino , Leptina/metabolismo , Leptina/sangue , Ratos , Transdução de Sinais/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Privação do Sono/metabolismo , Privação do Sono/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sono/efeitos dos fármacos , Sono/fisiologia , Nigella sativa/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
Protein Pept Lett ; 30(5): 411-426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076960

RESUMO

BACKGROUND: Bromelain is a complex mixture of protease enzyme extract from the fruit or stem of the pineapple plant and it has a history of folk medicine use. It is known to have a wide range of biological actions and it is most commonly used as an anti-inflammatory agent, though scientists have also discovered its potential as an anticancer and antimicrobial agent, it has been reported to have positive effects on the respiratory, digestive, circulatory systems and potentially on the immune system. OBJECTIVE: This study was designed to investigate the antidepressant potential of Bromelain in the chronic unpredictable stress (CUS) model of depression. METHODS: We studied the antioxidant activity, and neuroprotective effect of Bromelain by analyzing the fear and anxiety behavior, antioxidants, and neurotransmitter levels, and also by analyzing the histopathological changes. Adult male Wistar albino rats were divided into 5 groups, Control; Bromelain; CUS; CUS + Bromelain, CUS + fluoxetine. Animals of the CUS group, CUS + Bromelain group, and CUS + Fluoxetine group were exposed to CUS for 30 days. Animals of the Bromelain group and CUS + Bromelain group were treated orally with 40 mg/kg Bromelain throughout the period of CUS whereas, the positive control group was treated with fluoxetine. RESULTS: Results showed a significant decrease in oxidative stress marker (lipid peroxidation), and the stress hormone cortisol, in Bromelain-treated CUS-induced depression. Bromelain treatment in CUS has also resulted in a significant increase in neurotransmitter levels, which indicates the efficacy of Bromelain to counteract the monamine neurotransmitter changes in depression by increasing their synthesis and reducing their metabolism. In addition, the antioxidant activity of Bromelain prevented oxidative stress in depressed rats. Also, hematoxylin and eosin staining of hippocampus sections has revealed that Bromelain treatment has protected the degeneration of nerve cells by chronic unpredictable stress exposure. CONCLUSION: This data provides evidence for the antidepressant-like action of Bromelain by preventing neurobehavioral, biochemical, and monoamine alterations.


Assuntos
Depressão , Fluoxetina , Ratos , Animais , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Ratos Wistar , Bromelaínas/farmacologia , Bromelaínas/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Hipocampo/metabolismo , Modelos Animais de Doenças
3.
Protein Pept Lett ; 29(12): 1016-1030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125839

RESUMO

Gut peptides are small peptides secreted by gut endocrine cells that can modulate the roles and functions of different organs through signaling. Gut peptides can also majorly impact the body's energy homeostasis by regulating appetite and energy metabolism. The gut-brain axis (GBA) is bidirectional communication between the central nervous system (CNS) and the peripheral enteric nervous system. The regulation of appetite acts by hypothalamic neuronal activity. The complex interaction of hedonic and homeostatic factors implicates appetite regulation. In the CNS, the hypothalamus and brainstem have a dominating role in appetite regulation. The arcuate nucleus (ARC) of the hypothalamus plays a vital role in energy homeostasis, while other nuclei also play a role in appetite regulation. The gut conveys peripheral information about energy balance to the brain via gut peptides and receptors for the digestion of food. The varied gut peptides have different actions on appetite regulation.


Assuntos
Regulação do Apetite , Hipotálamo , Regulação do Apetite/fisiologia , Encéfalo/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...