Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1222, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619272

RESUMO

Programmed death-ligand 1 is a glycoprotein expressed on antigen presenting cells, hepatocytes, and tumors which upon interaction with programmed death-1, results in inhibition of antigen-specific T cell responses. Here, we report a mechanism of inhibiting programmed death-ligand 1 through small molecule-induced dimerization and internalization. This represents a mechanism of checkpoint inhibition, which differentiates from anti-programmed death-ligand 1 antibodies which function through molecular disruption of the programmed death 1 interaction. Testing of programmed death ligand 1 small molecule inhibition in a humanized mouse model of colorectal cancer results in a significant reduction in tumor size and promotes T cell proliferation. In addition, antigen-specific T and B cell responses from patients with chronic hepatitis B infection are significantly elevated upon programmed death ligand 1 small molecule inhibitor treatment. Taken together, these data identify a mechanism of small molecule-induced programmed death ligand 1 internalization with potential therapeutic implications in oncology and chronic viral infections.


Assuntos
Antígeno B7-H1/metabolismo , Endocitose , Inibidores de Checkpoint Imunológico/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/farmacologia , Antivirais/farmacologia , Células CHO , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Cricetulus , Modelos Animais de Doenças , Feminino , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo , Multimerização Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
2.
Nat Commun ; 9(1): 4821, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446652

RESUMO

Fusions involving the oncogenic gene RET have been observed in thyroid and lung cancers. Here we report RET gene alterations, including amplification, missense mutations, known fusions, novel fusions, and rearrangements in breast cancer. Their frequency, oncogenic potential, and actionability in breast cancer are described. Two out of eight RET fusions (NCOA4-RET and a novel RASGEF1A-RET fusion) and RET amplification were functionally characterized and shown to activate RET kinase and drive signaling through MAPK and PI3K pathways. These fusions and RET amplification can induce transformation of non-tumorigenic cells, support xenograft tumor formation, and render sensitivity to RET inhibition. An index case of metastatic breast cancer progressing on HER2-targeted therapy was found to have the NCOA4-RET fusion. Subsequent treatment with the RET inhibitor cabozantinib led to a rapid clinical and radiographic response. RET alterations, identified by genomic profiling, are promising therapeutic targets and are present in a subset of breast cancers.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ret/genética , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células NIH 3T3 , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/metabolismo , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
3.
Biomark Cancer ; 8(Supple 1): 1-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26917980

RESUMO

Significant advances in our knowledge of cancer genomes are rapidly changing the way we think about tumor biology and the heterogeneity of cancer. Recent successes in genomically-guided treatment approaches accompanied by more sophisticated sequencing techniques have paved the way for deeper investigation into the landscape of genomic rearrangements in cancer. While considerable research on solid tumors has focused on point mutations that directly alter the coding sequence of key genes, far less is known about the role of somatic rearrangements. With many recurring alterations observed across tumor types, there is an obvious need for functional characterization of these genomic biomarkers in order to understand their relevance to tumor biology, therapy, and prognosis. As personalized therapy approaches are turning toward genomic alterations for answers, these biomarkers will become increasingly relevant to the practice of precision medicine. This review discusses the emerging role of genomic rearrangements in breast cancer, with a particular focus on fusion genes. In addition, it raises several key questions on the therapeutic value of such rearrangements and provides a framework to evaluate their significance as predictive and prognostic biomarkers.

4.
PLoS One ; 7(6): e38185, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685555

RESUMO

The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.


Assuntos
Grafite/química , Nanopartículas/química , Nanotubos de Carbono/química , Óxidos/química , Fenômenos Químicos , Meios de Contraste/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman
5.
Tissue Eng Part C Methods ; 18(4): 310-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22082018

RESUMO

Three-dimensional polymeric scaffolds provide structural support and function as substrates for cells and bioactive molecules necessary for tissue regeneration. Noninvasive real-time imaging of scaffolds and/or the process of tissue formation within the scaffold remains a challenge. Microcomputed tomography, the widely used technique to characterize polymeric scaffolds, shows poor contrast for scaffolds immersed in biological fluids, thereby limiting its utilities under physiological conditions. In this article, multiscale photoacoustic microscopy (PAM), consisting of both acoustic-resolution PAM (AR-PAM) and optical-resolution PAM (OR-PAM), was employed to image and characterize single-walled carbon-nanotube (SWNT)-incorporated poly(lactic-co-glycolic acid) polymer scaffolds immersed in biological buffer. SWNTs were incorporated to reinforce the mechanical properties of the scaffolds, and to enhance the photoacoustic signal from the scaffolds. By choosing excitation wavelengths of 570 and 638 nm, multiscale PAM could spectroscopically differentiate the photoacoustic signals generated from blood and from carbon-nanotube-incorporated scaffolds. OR-PAM, providing a fine lateral resolution of 2.6 µm with an adequate tissue penetration of 660 µm, successfully quantified the average porosity and pore size of the scaffolds to be 86.5%±1.2% and 153±15 µm in diameter, respectively. AR-PAM further extended the tissue penetration to 2 mm at the expense of lateral resolution (45 µm). Our results suggest that PAM is a promising tool for noninvasive real-time imaging and monitoring of tissue engineering scaffolds in vitro, and in vivo under physiological conditions.


Assuntos
Microscopia/métodos , Nanotubos de Carbono/química , Técnicas Fotoacústicas/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bovinos , Galinhas , Ácido Láctico/química , Nanotubos de Carbono/ultraestrutura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...