Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 162: 110138, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252443

RESUMO

Milk glycoproteins play various biological roles including antibacterial, antiviral activities, modulating immune responses in living organisms. Released N-glycans from milk glycoproteins act as growth substrates for infant-associated bifidobacteria, which are key members of the breastfed infant's gut. To date, the mechanisms, and contributions of glycans to the biological activities of glycoproteins remain to be elucidated. Only by testing both the released glycans and the deglycosylated protein in their native (i.e., non-denatured) form, can the individual contribution to the biological activity of glycoproteins be elucidated. However, for conventional enzymatic and chemical deglycosylation strategies to work efficiently, glycoprotein denaturation is required, which alters the protein native shape, hindering further investigations of its biological roles. An endo-ß-N-acetylglucosaminidase (EndoBI-1) from Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) was characterized as having the ability to release N-glycans from bovine milk glycoproteins efficiently, without the denaturation. In this study, the activity of EndoBI-1 was compared to a commercial enzyme to release N-glycans, the peptide-N-glycosidase F (PNGase F), using dairy glycoproteins as the substrate. The kinetic evaluation showed that EndoBI-1 displayed higher activity on native glycoproteins than PNGase F, with 0.036 mg/mL×min and 0.012 mg/mL×min glycan release, respectively. EndoBI-1 released a broader array of glycan structures compared to PNGase F from native glycoproteins. Thirty-two and fifteen distinct compositions were released from the native glycoproteins by EndoBI-1 and PNGase F, respectively, as characterized by advanced mass spectrometry. EndoBI-1 can be considered a promising enzyme for the release of N-glycans and their protein backbone in the native form, which will enable effective glycan release and will facilitate subsequent investigations to reveal their contribution to glycoproteins' biological roles.


Assuntos
Acetilglucosaminidase , Colostro , Humanos , Gravidez , Feminino , Acetilglucosaminidase/análise , Colostro/química , Colostro/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/metabolismo
2.
PLoS One ; 12(2): e0171477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28170415

RESUMO

Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF.


Assuntos
Expressão Gênica , Lactoferrina/genética , Leite/metabolismo , Proteínas Recombinantes/genética , Animais , Animais Geneticamente Modificados , Bovinos , Análise por Conglomerados , Glicosilação , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Enzyme Microb Technol ; 77: 46-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138399

RESUMO

EndoBI-1 is a recently isolated endo-ß-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans.


Assuntos
Colostro/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/metabolismo , Soro do Leite/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Bifidobacterium/genética , Bovinos , Colostro/química , Feminino , Genes Bacterianos , Glicosilação , Cinética , Lactoferrina/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Polissacarídeos/química , Prebióticos , Gravidez , Ribonucleases/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Soro do Leite/química
4.
Biotechnol Prog ; 31(5): 1323-1330, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101185

RESUMO

Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N-glycans in protein functionality. Endo-ß-N-acetylglucosaminidase (EndoBI-1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat-stable enzyme that cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI-1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI-1 is able to cleave a high diversity of N-glycan structures. Nano-LC-Chip-Q-TOF MS data also revealed that different reaction conditions resulted in different N-glycan compositions released, thus modifying the relative abundance of N-glycan types. In general, more sialylated N-glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI-1 is able to release a wide variety of N-glycans, whose compositions can be selectively manipulated using different processing conditions.


Assuntos
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/química , Animais , Bifidobacterium/enzimologia , Bovinos , Fenômenos Químicos , Colostro , Glicoproteínas/química , Glicosilação , Concentração de Íons de Hidrogênio , Proteínas do Leite/química , Projetos Piloto , Temperatura
5.
J Adv Dairy Res ; 1(2): 104, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24818172

RESUMO

Many of milk's functional molecules could not be discovered until the right concordance of novel separation and analytical technologies were developed and applied. Many health-promoting components still await discovery due to technical challenges in their identification, isolation and testing. As new analytical technologies are assembled, new functional milk molecules will be discovered. Bovine milk is a source of a wide array of known bioactive compounds from a variety of molecular classes, including free glycans, lipids, glycolipids, peptides, proteins, glycoproteins, stem cells and microRNA. Because milk is such a complex mixture, when analyzed without fractionation or purification, many components mask the analytical signal of others, so some components cannot be detected. Modern analytics allow for the discovery and characterization of hundreds of novel milk compounds with high-resolution and high-accuracy. Liquid chromatography paired with electrospray ionization allows the separation of peptides, glycans and glycolipids for improved mass spectrometric detection. Target proteins and glycoproteins can now be purified from intact milk or other dairy streams by chromatography in order to better characterize these proteins for new bioactivities. The combination of advanced analytics with the new engineering capabilities will allow for high molecular resolution and separation techniques that can be scaled-up to semi-industrial and industrial scale for translation of lab-based discoveries. Bioguided analysis and design of dairy processing side streams will result in the transformation of waste into isolated functional ingredients to add value to dietary products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...