Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 56(6): 105-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17898449

RESUMO

The use of immersed membranes for solid-liquid separation in biological nutrient removal activated sludge (BNRAS) systems was investigated at lab scale. Two laboratory-scale BNR activated sludge systems were run in parallel, one a MBR system and the other a conventional system with secondary settling tanks. Both systems were in 3 reactor anaerobic, anoxic, aerobic UCT configurations. The systems were set up to have, as far as possible, identical design parameters such as reactor mass fractions, recycles and sludge age. Differences were the influent flow and total reactor volumes, and the higher reactor concentrations in the MBR system. The performances of the two systems were extensively monitored and compared to identify and quantify the influence of the membranes on system response. The MBR UCT system exhibited COD, FSA, TKN, TP and TSS removals that were consistently equivalent or superior to the conventional system. Better P removal in the MBR was attributed to lower observed P uptake in the anoxic zone. High nitrate loads to the anoxic reactor appeared to be the determining factor in stimulating P uptake. The MBR UCT system had a greater sludge production than the conventional system. This was partly attributable to the retention of all solids in the MBR reactor. For steady state design this increase is accommodated by increasing the influent unbiodegradable particulate COD fraction. Additionally an attempt was made to determine the Alpha values in the oxygen transfer rate. This paper briefly summarises and compares the results from both systems, and the conclusions that can be drawn from these results.


Assuntos
Reatores Biológicos , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/isolamento & purificação , Fósforo/metabolismo , Esgotos/química
2.
Water Sci Technol ; 56(6): 125-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17898451

RESUMO

The impact of including membranes for solid liquid separation on the kinetics of nitrogen and phosphorus removal was investigated. To achieve this, a membrane bioreactor (MBR) biological nutrient removal (BNR) activated sludge system was operated. From batch tests on mixed liquor drawn from the MBR BNR system, denitrification and phosphorus removal rates were delineated. Additionally the influence of the high total suspended solids concentrations present in the MBR BNR system and of the limitation of substrate concentrations on the kinetics was investigated. Moreover the ability of activated sludge in this kind of system to denitrify under anoxic conditions with simultaneous phosphate uptake was verified and quantified. The denitrification rates obtained for different mixed liquor (ML) concentrations indicate no effect of ML concentration on the specific denitrification rate. The denitrification took place at a single specific rate (K(2)) with respect to the ordinary heterotrophic organisms (OHOs, i.e. non-PAOs) active mass. Similarly, results have been obtained for the P removal process kinetics: no differences in specific rates were observed for different ML or substrate concentrations. From the P removal batch tests results it seems that the biological phosphorus removal population (PAO) consists of 2 different sets of organisms denitrifying PAO and aerobic PAO.


Assuntos
Reatores Biológicos , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Cinética , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/química , Fósforo/metabolismo , Esgotos/análise , Esgotos/química , Purificação da Água/métodos
3.
Chemosphere ; 41(5): 729-33, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10834375

RESUMO

Levels of 12 trace elements were measured in samples of the bryophyte Hypnum cupressiforme Hedw. and in soil collected in the surroundings of an oil-fired power plant in Northern Italy. Metal bioaccumulation in moss was estimated after soil correction in order to obtain deposition patterns and individuate potentially toxic metals emitted from the plant. V and Ni, occurring together in fuel oil, showed highest bioaccumulation values near the stacks. Mean contamination of the study area for these elements is 5.5 (V) and 3.3 (Ni) times the background levels of the reference site. Other elements showed only limited alterations of bioaccumulation values, in relation to agricultural and industrial activity in the study area.


Assuntos
Bryopsida/metabolismo , Monitoramento Ambiental/métodos , Metais/análise , Poluentes do Solo/análise , Bryopsida/química , Itália , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...