Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896596

RESUMO

The outreach of healthcare services is a challenge to remote areas with affected populations. Fortunately, remote health monitoring (RHM) has improved the hospital service quality and has proved its sustainable growth. However, the absence of security may breach the health insurance portability and accountability act (HIPAA), which has an exclusive set of rules for the privacy of medical data. Therefore, the goal of this work is to design and implement the adaptive Autonomous Protocol (AutoPro) on the patient's remote healthcare (RHC) monitoring data for the hospital using fully homomorphic encryption (FHE). The aim is to perform adaptive autonomous FHE computations on recent RHM data for providing health status reporting and maintaining the confidentiality of every patient. The autonomous protocol works independently within the group of prime hospital servers without the dependency on the third-party system. The adaptiveness of the protocol modes is based on the patient's affected level of slight, medium, and severe cases. Related applications are given as glucose monitoring for diabetes, digital blood pressure for stroke, pulse oximeter for COVID-19, electrocardiogram (ECG) for cardiac arrest, etc. The design for this work consists of an autonomous protocol, hospital servers combining multiple prime/local hospitals, and an algorithm based on fast fully homomorphic encryption over the torus (TFHE) library with a ring-variant by the Gentry, Sahai, and Waters (GSW) scheme. The concrete-ML model used within this work is trained using an open heart disease dataset from the UCI machine learning repository. Preprocessing is performed to recover the lost and incomplete data in the dataset. The concrete-ML model is evaluated both on the workstation and cloud server. Also, the FHE protocol is implemented on the AWS cloud network with performance details. The advantages entail providing confidentiality to the patient's data/report while saving the travel and waiting time for the hospital services. The patient's data will be completely confidential and can receive emergency services immediately. The FHE results show that the highest accuracy is achieved by support vector classification (SVC) of 88% and linear regression (LR) of 86% with the area under curve (AUC) of 91% and 90%, respectively. Ultimately, the FHE-based protocol presents a novel system that is successfully demonstrated on the cloud network.


Assuntos
Automonitorização da Glicemia , Segurança Computacional , Humanos , Glicemia , Confidencialidade , Privacidade , Atenção à Saúde
2.
Sensors (Basel) ; 22(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236731

RESUMO

A distinct security protocol is necessary for the exponential growth in intelligent edge devices. In particular, the autonomous devices need to address significant security concern to function smoothly in the high market demand. Nevertheless, exponential increase in the connected devices has made cloud networks more complex and suffer from information processing delay. Therefore, the goal of this work is to design a novel server-less mutual authentication protocol for the edge networks. The aim is to demonstrate an autonomous mutual authentication amongst the connected smart devices within the edge networks. The solution addresses applications of autonomous cars, smart things, and Internet of Things (IoT) devices in the edge or wireless sensor networks (WSN), etc. In this paper, the design proposes use of a public-key system, octet-based balanced-tree transitions, challenge-response mechanism, device unique ID (UID), pseudo-random number generator (PRNG), time-stamps, and event specific session keys. Ultimately, server-less design requires less infrastructure and avoids several types of network-based communication attacks, e.g., impersonating, Man in the middle (MITM), IoT-DDOS, etc. Additionally, the system overhead is eliminated by no secret key requirements. The results provide sufficient evidence about the protocol market competitiveness and demonstrate better benchmark comparison results.


Assuntos
Segurança Computacional , Internet das Coisas , Comunicação , Redes de Comunicação de Computadores , Humanos
3.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298417

RESUMO

The emerging field of eXplainable AI (XAI) in the medical domain is considered to be of utmost importance. Meanwhile, incorporating explanations in the medical domain with respect to legal and ethical AI is necessary to understand detailed decisions, results, and current status of the patient's conditions. Successively, we will be presenting a detailed survey for the medical XAI with the model enhancements, evaluation methods, significant overview of case studies with open box architecture, medical open datasets, and future improvements. Potential differences in AI and XAI methods are provided with the recent XAI methods stated as (i) local and global methods for preprocessing, (ii) knowledge base and distillation algorithms, and (iii) interpretable machine learning. XAI characteristics details with future healthcare explainability is included prominently, whereas the pre-requisite provides insights for the brainstorming sessions before beginning a medical XAI project. Practical case study determines the recent XAI progress leading to the advance developments within the medical field. Ultimately, this survey proposes critical ideas surrounding a user-in-the-loop approach, with an emphasis on human-machine collaboration, to better produce explainable solutions. The surrounding details of the XAI feedback system for human rating-based evaluation provides intelligible insights into a constructive method to produce human enforced explanation feedback. For a long time, XAI limitations of the ratings, scores and grading are present. Therefore, a novel XAI recommendation system and XAI scoring system are designed and approached from this work. Additionally, this paper encourages the importance of implementing explainable solutions into the high impact medical field.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos
4.
Diagnostics (Basel) ; 12(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35885612

RESUMO

Evaluating several vital signs and chest X-ray (CXR) reports regularly to determine the recovery of the pneumonia patients at general wards is a challenge for doctors. A recent study shows the identification of pneumonia by the history of symptoms and signs including vital signs, CXR, and other clinical parameters, but they lack predicting the recovery status after starting treatment. The goal of this paper is to provide a pneumonia status prediction system for the early affected patient's discharge from the hospital within 7 days or late discharge more than 7 days. This paper aims to design a multimodal data analysis for pneumonia status prediction using deep learning classification (MDA-PSP). We have developed a system that takes an input of vital signs and CXR images of the affected patient with pneumonia from admission day 1 to day 3. The deep learning then classifies the health status improvement or deterioration for predicting the possible discharge state. Therefore, the scope is to provide a highly accurate prediction of the pneumonia recovery on the 7th day after 3-day treatment by the SHAP (SHapley Additive exPlanation), imputation, adaptive imputation-based preprocessing of the vital signs, and CXR image feature extraction using deep learning based on dense layers-batch normalization (BN) with class weights for the first 7 days' general ward patient in MDA-PSP. A total of 3972 patients with pneumonia were enrolled by de-identification with an adult age of 71 mean ± 17 sd and 64% of them were male. After analyzing the data behavior, appropriate improvement measures are taken by data preprocessing and feature vectorization algorithm. The deep learning method of Dense-BN with SHAP features has an accuracy of 0.77 for vital signs, 0.92 for CXR, and 0.75 for the combined model with class weights. The MDA-PSP hybrid method-based experiments are proven to demonstrate higher prediction accuracy of 0.75 for pneumonia patient status. Henceforth, the hybrid methods of machine and deep learning for pneumonia patient discharge are concluded to be a better approach.

5.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062563

RESUMO

Authentication is essential for the prevention of various types of attacks in fog/edge computing. Therefore, a novel mode-based hash chain for secure mutual authentication is necessary to address the Internet of Things (IoT) devices' vulnerability, as there have been several years of growing concerns regarding their security. Therefore, a novel model is designed that is stronger and effective against any kind of unauthorized attack, as IoT devices' vulnerability is on the rise due to the mass production of IoT devices (embedded processors, camera, sensors, etc.), which ignore the basic security requirements (passwords, secure communication), making them vulnerable and easily accessible. Furthermore, crackable passwords indicate that the security measures taken are insufficient. As per the recent studies, several applications regarding its requirements are the IoT distributed denial of service attack (IDDOS), micro-cloud, secure university, Secure Industry 4.0, secure government, secure country, etc. The problem statement is formulated as the "design and implementation of dynamically interconnecting fog servers and edge devices using the mode-based hash chain for secure mutual authentication protocol", which is stated to be an NP-complete problem. The hash-chain fog/edge implementation using timestamps, mode-based hash chaining, the zero-knowledge proof property, a distributed database/blockchain, and cryptography techniques can be utilized to establish the connection of smart devices in large numbers securely. The hash-chain fog/edge uses blockchain for identity management only, which is used to store the public keys in distributed ledger form, and all these keys are immutable. In addition, it has no overhead and is highly secure as it performs fewer calculations and requires minimum infrastructure. Therefore, we designed the hash-chain fog/edge (HCFE) protocol, which provides a novel mutual authentication scheme for effective session key agreement (using ZKP properties) with secure protocol communications. The experiment outcomes proved that the hash-chain fog/edge is more efficient at interconnecting various devices and competed favorably in the benchmark comparison.

6.
Sensors (Basel) ; 19(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323987

RESUMO

There is strong demand for real-time suspicious tracking across multiple cameras in intelligent video surveillance for public areas, such as universities, airports and factories. Most criminal events show that the nature of suspicious behavior are carried out by un-known people who try to hide themselves as much as possible. Previous learning-based studies collected a large volume data set to train a learning model to detect humans across multiple cameras but failed to recognize newcomers. There are also several feature-based studies aimed to identify humans within-camera tracking. It would be very difficult for those methods to get necessary feature information in multi-camera scenarios and scenes. It is the purpose of this study to design and implement a suspicious tracking mechanism across multiple cameras based on correlation filters, called suspicious tracking across multiple cameras based on correlation filters (STAM-CCF). By leveraging the geographical information of cameras and YOLO object detection framework, STAM-CCF adjusts human identification and prevents errors caused by information loss in case of object occlusion and overlapping for within-camera tracking cases. STAM-CCF also introduces a camera correlation model and a two-stage gait recognition strategy to deal with problems of re-identification across multiple cameras. Experimental results show that the proposed method performs well with highly acceptable accuracy. The evidences also show that the proposed STAM-CCF method can continuously recognize suspicious behavior within-camera tracking and re-identify it successfully across multiple cameras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...