Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 167: 874-883, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34537577

RESUMO

Organomercury is the most toxic biomagnifiable state of mercury, and to date, no natural organomercurial detoxification mechanism is encountered in plants. Bacterial merB gene encoding organomercury lyase show low expression in transgenic plants. For ideal expression, a synthetic merBps gene possessing143 out of 213 codons discrete from native merB gene from Escherichia. coli was fabricated based on codon usage in tobacco. Through Agrobacterium-mediated transformation, the merBps gene got successfully integrated into tobacco. Of several putative merBps transformants selected with 200 µg ml-1 kanamycin, only ∼45% were PCR positive for both nptII and merBps genes. Healthy and vigorously growing shoots of few PCR-positive putative transgenic lines were multiplied and rooted. After transplantation and acclimatization, the resultant plants flowered and fruited in pots. Southern analysis revealed the presence of a single copy of the merBps gene in four lines. RT-PCR and Western investigations established successful transcription and translation of the merBps gene in these transgenic lines, respectively. Fabrication of fully functional organomercury lyase in merBps transgenic lines was established based on the potential of their (i) seeds to germinate; (ii) shoots to grow and multiply; and (iii) leaf disc to remain green, even in the presence of 4 nmole ml-1 phenylmercuryacetate (PMA) while the wild type was susceptible to even 1 nmole ml-1 PMA. These findings confirmed that the synthetic merBps gene could be effectively expressed in plants and exploited for remediation of organomercurial contaminated sites.


Assuntos
Mercúrio , Nicotiana , Escherichia coli/genética , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Transformação Genética
2.
Vegetos ; 34(1): 249-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33424147

RESUMO

Crops, livestock and forests are interlinked components of Central Himalayan agro-ecosystems. Traditionally, farm yard manure is produced from forest leaf litter and excreta of livestock obtaining > 50% feed from forests. Chemical fertilizers are not used in rainfed farms on slopes. Experiments were conducted to test whether increase in FYM input rates results improvement in economic and environmental functions of agro-ecosystems. Increase in FYM input rate from 30 t/ha/crop-season currently practiced by farmers to 60 t/ha/crop-season showed substantial increase in crop yield and soil quality. Rice and wheat were more responsive to FYM input than the legume black gram. Harvest index is maximum for 60 t/ha/crop-season FYM treatment for rice and wheat. In blackgram maximum harvest index was obtained when no FYM was provided. During the 3 years of study, soil pH decreased (becoming more acidic) as compared to that recorded at the start of the study. Soil organic carbon generally declined upto second kharif season and then improved during second rabi (fallow) under no input treatment, and 16t/ha/crop-season FYM treatment and levels of N, P and Mg too showed patterns similar to soil organic carbon, but the trends varied for Ca, Na and K. Soils of fields put to 0 and 16 t/ha/crop-season FYM treatments showed a net decrease in concentration of these elements and those put to 30 and 60 t/ha/crop-season FYM treatments showed increase in their level.

3.
Protoplasma ; 257(1): 319-330, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31359225

RESUMO

Owing to its essentiality for cellular metabolism, phosphate (PO43-) plays a pivotal role in ecosystem dynamics. Frequent testing of phosphate levels is necessary to monitor ecosystem health. Present investigations were aimed to identify the key factors that are essential for proper quantification of PO43-. Primarily, H+ levels played a critical role in the development of molybdenum blue complex by ammonium molybdate and PO43- with ascorbic acid as a reductant. Molybdenum blue complex formed in the presence of 8 to 12 mmol of H+ in 3 ml reaction mixture remained stable even after 72 h. Of different concentrations of ammonium molybdate and ascorbic acid tested, best molybdenum blue complex was formed when their concentrations were 24.3 and 5.68 µmol, respectively. More or less similar intensity of molybdenum blue complex (due to reduction of phosphomolybdic acid and not molybdic acid) was formed in the presence of H+ at levels ranging from 8 to 10 mmol in 3 ml reaction mixture. Our findings unequivocally demonstrated that (i) the reaction mixture containing 3% ammonium molybdate, 0.1% ascorbic acid and 5 M H2SO4 in the ratio of 1:1:1 is ideal for PO43- quantification; (ii) antimony (Sb) significantly curbs the formation of molybdenum blue under these ideal conditions; (iii) this fine-tuned protocol for PO43- quantification could be extended without any problem for determining the level of PO43- both in plant as well as soil samples; and (iv) Azotobacter possesses potential to enhance levels of total PO43- in leaves and grains and soluble/active PO43- in rhizosphere soils of wheat.


Assuntos
Ácido Ascórbico/farmacologia , Fosfatos/metabolismo , Substâncias Redutoras/farmacologia , Antimônio/metabolismo , Azotobacter/metabolismo , Concentração de Íons de Hidrogênio , Molibdênio/metabolismo , Reprodutibilidade dos Testes , Solo/química , Triticum/metabolismo
4.
Chemosphere ; 194: 340-351, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29220750

RESUMO

Potential impacts of inevitable leaks of silver nanoparticles (AgNPs) into environment on human beings need attention. Owing to the vitality of photosynthesis in maintaining life and ecosystem functioning, impacts of exogenously applied nanoparticulate and Ag+ on photosystem (PS)II function, which governs overall photosynthesis, in wheat and sunflower were evaluated. PSII efficiency and related Chl a fluorescence kinetics of these two plants remained unaffected by AgNPs. However, Ag+ caused a significant decline in the PSII activity and related fluorescence steps in wheat, but not in sunflower. Electron flow between QA and PQ pool was found most sensitive to Ag+. Number of active reaction centers, electron transport, trapping of absorbed light for photochemistry, and performance index declined, while dissipation of absorbed light energy as heat significantly increased in wheat exposed to Ag+. Total antioxidant activity in sunflower was least affected by both Ag and AgNPs. In contrast, in the case of wheat, the antioxidant activity was declined by Ag+ but not by AgNPs. Further, the amount of silver absorbed by plants exposed to Ag+ was higher than that absorbed by plants exposed to AgNPs. While wheat retained majority of Ag in its roots, sunflower showed major Ag accumulation in stem. Photosynthetic events in sunflower, unlike wheat, were least affected as no detectable Ag levels was recorded in their leaves. Our findings revealed that AgNPs seemed non/less-toxic to light harnessing photosynthetic machinery of wheat, compared to Ag+. Photosynthetic events in sunflower were not affected by Ag+, either, as its translocation to leaves was restricted.


Assuntos
Helianthus/fisiologia , Fotossíntese/efeitos dos fármacos , Prata/farmacologia , Triticum/fisiologia , Clorofila/metabolismo , Helianthus/metabolismo , Íons/farmacologia , Nanopartículas Metálicas/química , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Triticum/metabolismo
5.
PLoS One ; 12(9): e0185230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945775

RESUMO

A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.


Assuntos
Gleiquênias/efeitos dos fármacos , Gleiquênias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Ureia/farmacologia , Aminoácidos/metabolismo , ATPase de Ca(2+) e Mg(2+)/metabolismo , Catalase/metabolismo , Gleiquênias/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Lipídeos de Membrana/metabolismo , Nitrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Front Plant Sci ; 8: 1052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680432

RESUMO

In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus) to withstand silver ion (Ag+)-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs) in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS) II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

7.
Protoplasma ; 254(2): 763-770, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27311981

RESUMO

Investigations were conducted to elucidate the key factor behind Cd2+-toxicity-induced proline accumulation in Indian mustard (Brassica juncea) by raising seedlings, independently in distilled water (DW) and mineral growth medium (MGM) in the presence of 0-500 µM CdCl2. Invariably, Cd2+-induced toxicity, measured in terms of growth, was significantly more prominent in seedlings raised in DW than those raised in MGM. Cd2+ brought about a significant reduction in growth and photosystem II activity with a concomitant increase in proline levels, in a concentration-dependent manner. Interestingly, the level of iron in shoots of seedlings decreased proportionately with increase in Cd2+ toxicity. Cd2+-promoted proline accumulation was significantly higher in seedlings raised in DW than those raised in MGM. Depletion of essential cations (viz. Ca2+, Mg2+, K+, and Fe2+) from MGM one at a time revealed that depletion of Fe2+ leads to maximal proline accumulation under Cd2+ toxicity. Interestingly, proline level in seedlings raised under Cd2+ toxicity in DW supplemented with Fe2+ was similar to that recorded in seedlings raised in MGM. Our results convincingly demonstrated that Cd2+-induced iron deficiency promotes proline accumulation.


Assuntos
Cádmio/toxicidade , Ferro/metabolismo , Prolina/metabolismo , Biomassa , Mostardeira/anatomia & histologia , Mostardeira/efeitos dos fármacos , Mostardeira/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
8.
Int J Phytoremediation ; 19(1): 80-86, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483000

RESUMO

Owing to wide range of applications, nanotechnology is growing expeditiously. Likely negative impact of nanoparticles (NPs), which are inevitably released into our surroundings, on living organisms is of growing concern. Findings presented here are outcome of investigations carried out to evaluate the impact of ionic and NP speciation states of silver on light harnessing photosynthetic events in Spirodela polyrhiza fronds. Fronds exposed to ionic speciation state showed significant decline in PS (photosystem) II efficiency (Fv/Fm; variable fluorescence/maximal fluorescence), while those exposed to silver nanoparticles (Ag-NPs) showed marginal decline. Accordingly, decline in amplitude of Chl a fluorescence transients was sharper in fronds treated with Ag+ than those treated with Ag-NPs. Of the various phases Chl a fluorescence transient, J-I phase [which reflects reduction of plastoquinone (PQ) pool] was most sensitive to both Ag+ and Ag-NPs. Phenomenological yield models, built using Biolyzer software, revealed that fronds exposed to Ag+ possessed significantly lower potential to trap and harness absorbed light energy for photochemical reactions than those exposed to Ag-NPs. Accordingly, dissipation of absorbed light energy as heat was significantly higher in fronds exposed to Ag+ than those exposed to Ag-NPs. These findings revealed that NP speciation state of silver is significantly less toxic to light harnessing photosynthetic machinery of S. polyrhiza, compared to ionic speciation state.


Assuntos
Araceae/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/fisiologia , Biodegradação Ambiental , Íons/toxicidade , Luz , Nanopartículas Metálicas/toxicidade , Prata/química , Poluentes Químicos da Água/química
9.
PLoS One ; 11(12): e0167937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936248

RESUMO

The unique potential of chloroplasts/thylakoids to harness light energy to transport electrons from H2O to various entities was exploited for reduction of Ag+ to generate nanoparticles (NPs). Spinach thylakoids/chloroplasts turned AgNO3 solutions brown in light, but not in dark. Besides showing Ag-NPs specific surface plasmon resonance band, these brown solutions showed presence of 5-30 nm crystalline NPs composed of Ag. Powder X-ray diffraction (PXRD) analysis revealed that Ag-NPs were biphasic composed of face-centered cubic Ag0 and cubic Ag2O. X-ray photoelectron spectroscopy (XPS) data further corroborated the presence of Ag2O in Ag-NPs. Limited formation of Ag-NPs in dark and increased generation of Ag0/Ag2O-NPs with increase in light intensity (photon flux density) by thylakoids/chloroplasts, established the role of light-harvesting photosynthetic machinery in generation of Ag0/Ag2O-NPs. Potential of thylakoids/chloroplasts to generate Ag-NPs from Ag+ on exposure to red and blue wavelength regions of visible light of electromagnetic spectrum, further confirmed the involvement of photosynthetic electron transport in reduction of Ag+ and generation of Ag-NPs. While light energy mediated photosynthetic electron transport donates energized electrons extracted from H2O to Ag+ to form Ag0-NPs, O2 released as a by-product during photolysis of H2O oxidizes Ag0 to form Ag2O-NPs. Our findings furnish a novel, simple, economic and green method that can be exploited for commercial production of Ag0/Ag2O-NPs.


Assuntos
Cloroplastos/metabolismo , Luz , Nanopartículas Metálicas/química , Prata/química , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Espectroscopia Fotoeletrônica
10.
Protoplasma ; 253(6): 1577-1582, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26573534

RESUMO

Proline, a stress marker, is routinely quantified by a protocol that essentially uses hazardous toluene. Negative impacts of toluene on human health prompted us to develop a reliable alternate protocol for proline quantification. Absorbance of the proline-ninhydrin condensation product formed by reaction of proline with ninhydrin at 100 °C in the reaction mixture was significantly higher than that recorded after its transfer to toluene, revealing that toluene lowers sensitivity of this assay. λ max of the proline-ninhydrin complex in the reaction mixture and toluene were 508 and 513 nm, respectively. Ninhydrin in glacial acetic acid yielded higher quantity of the proline-ninhydrin condensation product compared to ninhydrin in mixture of glacial acetic acid and H3PO4, indicating negative impact of H3PO4 on proline quantification. Further, maximum yield of the proline-ninhydrin complex with ninhydrin in glacial acetic acid and ninhydrin in mixture of glacial acetic acid and H3PO4 was achieved within 30 and 60 min, respectively. This revealed that H3PO4 has negative impact on the reaction rate and quantity of the proline-ninhydrin complex formed. In brief, our proline quantification protocol involves reaction of a 1-ml proline sample with 2 ml of 1.25 % ninhydrin in glacial acetic acid at 100 °C for 30 min, followed by recording absorbance of the proline-ninhydrin condensation product in the reaction mixture itself at 508 nm. Amongst proline quantification protocols known till date, our protocol is the most simple, rapid, reliable, cost-effective, and eco-friendlier.


Assuntos
Bioquímica/métodos , Química Verde/métodos , Prolina/análise , Padrões de Referência , Análise Espectral , Fatores de Tempo
11.
Funct Plant Biol ; 43(4): 346-355, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480466

RESUMO

During evaluations of the ecophysiological adaptations of floating and submerged leaves of Potamogeton nodosus Poir, investigations were carried to assess their antioxidant status. Floating leaves possessed a significantly higher level of C skeletons per unit of area compared with submerged leaves as they possessed greater PSI and PSII activity (hence had superior potential to harness absorbed light energy and generate assimilatory power) and carboxylase activity of Rubisco (hence superior potential to fix CO2) compared with the latter. Interestingly, submerged leaves possessed ~2 times higher H2O2 levels compared with floating leaves. In contrast, the activity of all antioxidant enzymes tested (catalase, guaiacol peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) were significantly higher in floating leaves than in submerged leaves. Amazingly, catalase activity (a H2O2 detoxifying enzyme) was over fourfold higher in floating leaves than in submerged leaves. Among the nonenzymatic antioxidants, although levels of phenolics, ascorbate and thiols did not vary significantly between floating and submerged leaves, the level of total carotenoids was significantly higher in the former than the latter. In summary, floating leaves possess superior and efficient photosynthetic machinery for light and dark reactions, and also possess strong and superior enzymatic antioxidant machinery for scavenging reactive oxygen species and maintenance of the NAD(P)H to NAD(P)+ ratio compared with submerged leaves. Accordingly, floating leaves possessed superior potential to withstand photodamage compared with submerged leaves. We believe that excess H2O2 provides an ideal defence tool for submerged leaves to counter predators, pests and pathogens.

12.
Photosynth Res ; 125(1-2): 305-19, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25366828

RESUMO

Investigations were carried to unravel mechanism(s) for higher tolerance of floating over submerged leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition. Chloroplasts from floating leaves showed ~5- and ~6.4-fold higher Photosystem (PS) I (reduced dichlorophenol-indophenol â†’ methyl viologen â†’ O2) and PS II (H2O â†’ parabenzoquine) activities over those from submerged leaves. The saturating rate (V max) of PS II activity of chloroplasts from floating and submerged leaves reached at ~600 and ~230 µmol photons m(-2) s(-1), respectively. Photosynthetic electron transport rate in floating leaves was over 5-fold higher than in submerged leaves. Further, floating leaves, as compared to submerged leaves, showed higher F v/F m (variable to maximum chlorophyll fluorescence, a reflection of PS II efficiency), as well as a higher potential to withstand photoinhibitory damage by high light (1,200 µmol photons m(-2) s(-1)). Cells of floating leaves had not only higher mitochondria to chloroplast ratio, but also showed many mitochondria in close vicinity of chloroplasts. Electron transport (NADH â†’ O2; succinate â†’ O2) in isolated mitochondria of floating leaves was sensitive to both cyanide (CN(-)) and salicylhydroxamic acid (SHAM), whereas those in submerged leaves were sensitive to CN(-), but virtually insensitive to SHAM, revealing the presence of alternative oxidase in mitochondria of floating, but not of submerged, leaves. Further, the potential of floating leaves to withstand photoinhibitory damage was significantly reduced in the presence of CN(-) and SHAM, individually and in combination. Our experimental results establish that floating leaves possess better photosynthetic efficiency and capacity to withstand photoinhibition compared to submerged leaves; and mitochondria play a pivotal role in protecting photosynthetic machinery of floating leaves against photoinhibition, most likely by oxidation of NAD(P)H and reduction of O2.


Assuntos
Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Potamogetonaceae/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Fluorescência , Luz , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Fotossíntese , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Potamogetonaceae/efeitos da radiação
13.
Environ Monit Assess ; 186(11): 7941-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103212

RESUMO

This paper addresses the phenotypic variation among Ricinus communis L. populations in four urban habitat types (road verges, garbage dumps, construction debris, and natural area) in Delhi, India, by evaluating important traits such as plant height, basal circumference, seeds per plant, seed size, seed weight, specific leaf area, and reproductive index. An important biochemical marker, proline, considered as a good plant performance indicator under stress was also quantified in leaves of R. communis to evaluate its response in different habitats. Interestingly, the species showed significant variation in plant height, specific leaf area, seed size, seed weight, and leaf proline content in different habitat types. Leaf proline content was positively related to plant height, specific leaf area, and seed size while negatively related to the total number of seeds/plant. Interestingly, reproductive index, calculated as a ratio of the total number of seeds to the plant height also showed a negative relation with leaf proline content. Results indicated that R. communis exhibits adaptive modulation of growth, reproductive traits, and leaf proline content in various urban habitats which contributes to invasiveness, range expansion, and establishment of the species. The study also gives evidence of how morphological and physiological traits could directly affect invasiveness of R. communis.


Assuntos
Ecossistema , Meio Ambiente , Espécies Introduzidas , Ricinus/crescimento & desenvolvimento , Monitoramento Ambiental , Índia , Fenótipo , Folhas de Planta/química , Prolina/análise , Sementes/química
14.
PLoS One ; 9(1): e85242, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416368

RESUMO

While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au(3+), despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au(3+), it was contemplated that potential of cowpea to withstand Au(3+) is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Au-nanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au(3+) triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au(3+), a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au(3+)-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au(3+) to form non/less toxic Au-nanoparticles. Our investigations also pave a novel, simple, green and economically viable protocol for generation of Au-nanoparticles.


Assuntos
Cloretos/química , Fabaceae/química , Compostos de Ouro/química , Nanopartículas Metálicas/química , Fenóis/química , Plântula/química , Sementes/química , Fabaceae/metabolismo , Germinação , Malondialdeído/metabolismo , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Fenóis/metabolismo , Prolina/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Ressonância de Plasmônio de Superfície , Difração de Raios X
15.
Biometals ; 27(1): 97-114, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362906

RESUMO

While evaluating the impact of iron nanoparticles (NPs) on terrestrial plants we realized potential of root system of intact plants to form orange-brown complexes constituted of NPs around their roots and at bottom/side of tubes when exposed to FeCl3. These orange-brown complexes/plaques seen around roots were similar to that reported in wetland plants under iron toxicity. Transmission electron microscopy coupled with energy dispersive X-ray analysis revealed that orange-brown complexes/plaques, formed by root system of all 16 plant species from 11 distinct families tested, were constituted of NPs containing Fe. Selected area electron diffraction and powder X-ray diffraction spectra showed their amorphous nature. Thermogravimetric and fourier transform infra-red analysis showed that these Fe-NPs/nanocomplexes were composed of iron-oxyhydroxide. These plant species generated orange-brown Fe-NPs/nanocomplexes even under strict sterile conditions establishing inbuilt and independent potential of their root system to generate Fe-NPs. Root system of intact plants showed ferric chelate reductase activity responsible for reduction of Fe(3+) to Fe(2+). Reduction of potassium ferricyanide by root system of intact plants confirmed that root surface possess strong reducing strength, which could have played critical role in reduction of Fe(3+) and formation of Fe-NPs/nanocomplexes. Atomic absorption spectrophotometric analysis revealed that majority of iron was retained in Fe-nanocomplexes/plaques, while only 2-3 % was transferred to shoots, indicating formation of nanocomplexes is a phytostabilization mechanism evolved by plants to restrict uptake of iron above threshold levels. We believe that formation of Fe-NPs/nanocomplexes is an ideal homeostasis mechanism evolved by plants to modulate uptake of desired levels of ionic Fe.


Assuntos
Ferro/química , Ferro/metabolismo , Magnoliopsida/metabolismo , Nanopartículas Metálicas , Raízes de Plantas/metabolismo , Íons/química , Íons/metabolismo , Magnoliopsida/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Raízes de Plantas/química , Propriedades de Superfície
16.
PLoS One ; 8(8): e71123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976990

RESUMO

In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³âº solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³âº solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³âº to Au° which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³âº to Au° to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Fotossíntese , Potamogetonaceae/química , Spinacia oleracea/química , Tilacoides/química , Transporte de Elétrons , Luz , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Difração de Raios X
17.
PLoS One ; 8(4): e61750, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626722

RESUMO

We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm(2). Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol.


Assuntos
Misturas Complexas/química , Manitol/química , Nanopartículas Metálicas/química , Óxidos/química , Compostos de Prata/química , Prata/química , Leveduras/química , Cor , Meios de Cultura/química , Temperatura Alta , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Pressão , Nitrato de Prata/química , Difração de Raios X
18.
Ecotoxicol Environ Saf ; 74(6): 1678-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21724257

RESUMO

Salvinia possess inherent capacity to accumulate high levels of various heavy metals. Accumulation of Cr, Fe, Ni, Cu, Pb and Cd ranged between 6 and 9 mg g(-1)dry wt., while accumulation of Co, Zn and Mn was ∼4 mg g(-1)dry wt. Heavy metal accumulation affected the physiological status of plants. Photosystem II activity noted to decline in Ni, Co, Cd, Pb, Zn and Cu exposed plants, while Photosystem I activity showed enhancement under heavy metal stress in comparison to control. The increase in PS I activity supported build up of transthylakoidal proton gradient (ΔpH), which subsequently helped in maintaining the photophosphorylation potential. Ribulose 1,5 dicarboxylase/oxygenase (Rubisco) activity noted a decline. Alterations in photosynthetic potential of Salvinia result primarily from changes in carbon assimilation efficiency with slight variations in primary photochemical activities and photophosphorylation potential. Studies suggest that Salvinia possess efficient photosynthetic machinery to withstand heavy metal stress.


Assuntos
Gleiquênias/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Carbono/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Gleiquênias/fisiologia , Metais Pesados/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo
19.
Ecotoxicol Environ Saf ; 72(6): 1790-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19409614

RESUMO

Salvinia natans possess capacity to accumulate high concentrations of chromium (Cr). Studies were carried out to evaluate physiological efficiency and defensive potential of plant exposed to Cr-rich wastewater. Among photochemical reactions, photosystem I (PS I) and photosystem II (PS II) activity noted an increase in plants exposed to Cr-rich wastewater. Fluorescence ratio F(v)/F(m) depicted no alteration in plants exposed to Cr. The activity of ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) noted a decline, while transthylakoidal pH gradient (DeltapH) (correlative of photophosphorylation) showed increase in plants exposed to Cr-rich wastewater. Plants lacked the ability to produce malondialdehyde, but possessed efficient enzymic and non-enzymic antioxidant defense mechanisms that played important role in curtailing oxidative stress. The activities of antioxidant enzymes showed alleviation in plants exposed to Cr-rich wastewater. The levels of cellular antioxidants noted decline suggesting a defensive role in protection against oxidative stress caused by Cr. The present findings suggest that Salvinia possess efficient antioxidant machinery that curtails oxidative stress caused by Cr-rich wastewater and protects photosynthetic machinery from damage.


Assuntos
Antioxidantes/metabolismo , Cromo/toxicidade , Gleiquênias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Água/química , Clorofila/metabolismo , Cromo/análise , Cromo/metabolismo , Enzimas/metabolismo , Gleiquênias/enzimologia , Resíduos Industriais/análise , Cinética , Malondialdeído/metabolismo , Metais Pesados/análise , Metais Pesados/metabolismo , Fotossíntese/efeitos dos fármacos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo , Purificação da Água
20.
Plant Physiol Biochem ; 47(5): 391-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19186067

RESUMO

Chloroplasts from plants of transgenic lines expressing prokaryotic choline oxidase gene (the codA(ps) gene; GenBank accession number-AY589052) and wild-type of chickpea and Indian mustard were evaluated for their efficacy to withstand photoinhibitory damage, by exposing them to high light intensity ( approximately 1200micromolm(-2)s(-1) photon flux density) at 10 and 25 degrees C. Western analysis confirmed presence of choline oxidase in chloroplasts of only transgenic lines. The loss in PS II activity in chloroplasts of wild-type exposed to high light intensity was significantly higher than that in chloroplasts of transgenic chickpea as well as Indian mustard. Although, chloroplasts of both wild-type and transgenic chickpea as well as Indian mustard were more sensitive to photoinhibitory damage at 10 than at 25 degrees C, the damage recorded in chloroplasts harboring choline oxidase was significantly lower than those of wild-type. High light promotes H(2)O(2) production in chloroplasts more significantly at low temperature (10 degrees C) than at 25 degrees C. We compared low temperature accelerated photoinhibition of chloroplasts with that caused due to exogenously applied H(2)O(2). Although exogenous H(2)O(2) accelerated high light intensity induced loss in PS II activity of chloroplasts of wild-type, it caused only a little alteration in PS II activity of chloroplasts from transgenic lines of both chickpea and Indian mustard, demonstrating that the chloroplasts harboring choline oxidase are better equipped to resist photoinhibition. We hypothesize that H(2)O(2) produced by choline oxidase as a byproduct during synthesis of glycinebetaine is responsible for building stronger antioxidant system in chloroplasts of transgenic lines compared to that of wild-type.


Assuntos
Oxirredutases do Álcool/metabolismo , Cloroplastos/metabolismo , Estresse Oxidativo , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Oxirredutases do Álcool/genética , Arthrobacter/enzimologia , Western Blotting , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Cicer/genética , Cicer/metabolismo , Peróxido de Hidrogênio/farmacologia , Luz , Dados de Sequência Molecular , Mostardeira/genética , Mostardeira/metabolismo , Oxidantes/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/genética , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...