Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 400: 123213, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32593939

RESUMO

Volcanic ashes particles are subjected to substantial modification during explosive eruptions. The mineralogical and compositional changes have important consequences on the environment and human health. Nevertheless, the relationship between the speciation of iron (Fe) and the mineralogical composition and particle granulometry of the ashes, along with their interaction with water, are largely unknown. In particular, the Fe oxidation state and the possible formation of new Fe-bearing phases in presence of S, Cl, and F in the plume are key points to assess the impact of the ashes. Fragmental material ejected during volcanic activity (tephra) in 2013, was collected on the Mt. Etna (Italy) and investigated using a multi-technique approach that included conventional Electron Paramagnetic Resonance (EPR), high field EPR (HFEPR), EchoEPR, and Fe K-edge X-ray Absorption Spectroscopy (XAS). These element-selective techniques allowed obtaining a detailed information on the oxidation state and coordination environment of Fe, and of its speciation in the ash samples as a function of the granulometry. A complex mineralogical assemblage, consisting of variable amounts of nanometric crystalline Fe inclusions in a glass matrix, and of Fe-oxides and Fe-sulfur phases was revealed. A risk assessment of the ashes is attempted.

2.
Sci Rep ; 9(1): 6531, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024082

RESUMO

The occurrence of highly severe silica-related diseases among the resin- and silica-based artificial stone workers was claimed, associated to an extremely short latency. High levels of exposure and intrinsic properties of AS are thought to modulate the development of silicosis and auto-immune diseases. This study compares parent materials and processed dusts, to shed light on changes of AS occurring in the manufacturing process, through an XRF, EPR and XAS investigation. We point out the extremely wide variability of the materials, the occurrence of chemical signatures impressed by the processing techniques, and the unprecedented generation of stable radicals associated to the lysis of the Si-O chemical bond inside the resin coated respirable crystalline silica. These results suggest that the AS processing in industrial stone workshops can create respirable dusts with peculiar physical and chemical properties, to be correlated to the observed clinical evidences.


Assuntos
Saúde , Dióxido de Silício/química , Espectroscopia de Ressonância de Spin Eletrônica , Análise de Fourier , Humanos , Íons , Minerais/química , Pós , Espectrometria por Raios X , Elementos de Transição
3.
J Hazard Mater ; 312: 18-27, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015375

RESUMO

Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Quartzo/química , Animais , Poeira , Ferro , Camundongos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(6): 1113-27, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11993460

RESUMO

High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study three complexes of high spin Manganese(III), 3d4, S = 2. The complexes studied were tetraphenylporphyrinatomanganese(III) chloride (MnTPPCI), phthalocyanatomanganese(III) chloride (MnPcCl), and (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III) (MnCor). We demonstrate the ability to obtain both field-oriented (single-crystal like) spectra and true powder pattern HFEPR spectra of solid samples. The latter are obtained by immobilizing the powder, either in an n-eicosane mull or KBr pellet. We can also obtain frozen solution HFEPR spectra with good signal-to-noise, and yielding the expected true powder pattern. Frozen solution spectra are described for MnTPPCl in 2:3 (v/v) toluene/CH2Cl2 solution and for MnCor in neat pyridine (py) solution. All of the HFEPR spectra have been fully analyzed using spectral simulation software and a complete set of spin Hamiltonian parameters has been determined for each complex in each medium. Both porphyrinic complexes (MnTPPCl and MnPcCl) are rigorously axial systems, with similar axial zero-field splitting (zfs): D approximately -2.3 cm(-1), and g values quite close to 2.00. In contrast, the corrole complex, MnCor, exhibits slightly larger magnitude, rhombic zfs: D approximtely -2.6 cm(-1), absolute value(E) approximately 0.015 cm(-1), also with g values quite close to 2.00. These results are discussed in terms of the molecular structures of these complexes and their electronic structure. We propose that there is a significant mixing of the triplet (S = 1) excited state with the quintet (S= 2) ground state in Mn(III) complexes with porphyrinic ligands, which is even more pronounced for corroles.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Manganês/química , Brometos/análise , Fenômenos Químicos , Físico-Química , Elétrons , Íons , Ligantes , Modelos Químicos , Compostos Organometálicos/análise , Compostos Organometálicos/química , Porfirinas/análise , Porfirinas/química , Compostos de Potássio/análise
5.
Inorg Chem ; 38(26): 6121-6129, 1999 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-11671322

RESUMO

High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study two complexes of high-spin manganese(III), d(4), S = 2. The complexes studied were (tetraphenylporphyrinato)manganese(III) chloride and (phthalocyanato)manganese(III) chloride. Our previous HFEPR study (Goldberg, D. P.; Telser, J.; Krzystek, J.; Montalban, A. G.; Brunel, L.-C.; Barrett, A. G. M.; Hoffman, B. M. J. Am. Chem. Soc. 1997, 119, 8722-8723) included results on the porphyrin complex; however, we were unable to obtain true powder pattern HFEPR spectra, as the crystallites oriented in the intense external magnetic field. In this work we are now able to immobilize the powder, either in an n-eicosane mull or KBr pellet and obtain true powder pattern spectra. These spectra have been fully analyzed using spectral simulation software, and a complete set of spin Hamiltonian parameters has been determined for each complex. Both complexes are rigorously axial systems, with relatively low magnitude zero-field splitting: D approximately -2.3 cm(-)(1) and g values quite close to 2.00. Prior to this work, no experimental nor theoretical data exist for the metal-based electronic energy levels in Mn(III) complexes of porphyrinic ligands. This lack of information is in contrast to other transition metal complexes and is likely due to the dominance of ligand-based transitions in the absorption spectra of Mn(III) complexes of this type. We have therefore made use of theoretical values for the electronic energy levels of (phthalocyanato)copper(II), which electronically resembles these Mn(III) complexes. This analogy works surprisingly well in terms of the agreement between the calculated and experimentally determined EPR parameters. These results show a significant mixing of the triplet (S = 1) excited state with the quintet (S = 2) ground state in Mn(III) complexes with porphyrinic ligands. This is in agreement with the experimental observation of lower spin ground states in other metalloporphyrinic complexes, such as those of Fe(II) with S = 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...