Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850664

RESUMO

Metastatic colorectal cancer (mCRC) currently lacks reliable biomarkers for precision medicine, particularly for chemotherapy-based treatments. This study examines the behavior of 11 CXC chemokines in the blood of 104 mCRC patients undergoing first-line oxaliplatin-based treatment to pinpoint predictive and prognostic markers. Serum samples were collected before treatment, at response evaluation (EVAR), and at disease progression or last follow-up. Chemokines were assessed in all samples using a Luminex® custom panel. CXCL13 levels increased at EVAR in responders, while in non-responders it decreased. Increasing levels of CXCL13 at EVAR, independently correlated with improved progression-free survival (PFS) and overall survival (OS). Nanostring® analysis in primary tumor samples showed CXCL13 gene expression's positive correlation not only with gene profiles related to an immunogenic tumor microenvironment, increased B cells and T cells (mainly CD8+) but also with extended OS. In silico analysis using RNAseq data from liver metastases treated or not with neoadjuvant oxaliplatin-based combinations, and deconvolution analysis using the MCP-counter algorithm, confirmed CXCL13 gene expression's association with increased immune infiltration, improved OS, and Tertiary Lymphoid Structures (TLSs) gene signatures, especially in neoadjuvant-treated patients. CXCL13 analysis in serum from 36 oxaliplatin-treated patients from the METIMMOX study control arm, reported similar findings. In conclusion, the increase of CXCL13 levels in peripheral blood and its association with the formation of TLSs within the metastatic lesions, emerges as a potential biomarker indicative of the therapeutic efficacy in mCRC patients undergoing oxaliplatin-based treatment.


Assuntos
Biomarcadores Tumorais , Quimiocina CXCL13 , Neoplasias Colorretais , Oxaliplatina , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Oxaliplatina/uso terapêutico , Oxaliplatina/farmacologia , Masculino , Quimiocina CXCL13/sangue , Feminino , Idoso , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Idoso de 80 Anos ou mais , Intervalo Livre de Progressão , Microambiente Tumoral , Prognóstico
2.
Genome Med ; 16(1): 21, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308367

RESUMO

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
3.
Springerplus ; 1: 44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23961369

RESUMO

Enforced cell transdifferentiation of human cancer cells is a promising alternative to conventional chemotherapy. We previously identified albumin-associated lipid- and, more specifically, saturated fatty acid-induced transdifferentiation programs in human cancer cells (HCCLs). In this study, we further characterized the adipocyte-like cells, resulting from the transdifferentiation of human cancer cell lines MCF-7 and MALME-3M, and proposed a common mechanistic approach for these transdifferentiating programs. We showed the loss of pigmentation in MALME-3M cells treated with albumin-associated lipids, based on electron microscopic analysis, and the overexpression of perilipin 2 (PLIN2) by western blotting in MALME-3M and MCF-7 cells treated with unsaturated fatty acids. Comparing the gene expression profiles of naive melanoma MALME-3M cells and albumin-associated lipid-treated cells, based on RNA sequencing, we confirmed the transcriptional upregulation of some key adipogenic gene markers and also an alternative splicing of the adipogenic master regulator PPARG, that is probably related to the reported up regulated expression of the protein. Most importantly, these results also showed the upregulation of genes responsible for Clathrin (CLTC) and other adaptor-related proteins. An increase in CLTC expression in the transdifferentiated cells was confirmed by western blotting. Inactivation of CLTC by chlorpromazine (CHP), an inhibitor of CTLC mediated endocytosis (CME), and gene silencing by siRNAs, partially reversed the accumulation of neutral lipids observed in the transdifferentiated cells. These findings give a deeper insight into the phenotypic changes observed in HCCL to adipocyte-like transdifferentiation and point towards CME as a key pathway in distinct transdifferentiation programs. DISCLOSURES: Simon C and Aguilar-Gallardo C are co-inventors of the International Patent Application No. PCT/EP2011/004941 entitled "Methods for tumor treatment and adipogenesis differentiation".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...