Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849569

RESUMO

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.

2.
Nat Methods ; 21(5): 793-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509328

RESUMO

SQANTI3 is a tool designed for the quality control, curation and annotation of long-read transcript models obtained with third-generation sequencing technologies. Leveraging its annotation framework, SQANTI3 calculates quality descriptors of transcript models, junctions and transcript ends. With this information, potential artifacts can be identified and replaced with reliable sequences. Furthermore, the integrated functional annotation feature enables subsequent functional iso-transcriptomics analyses.


Assuntos
Anotação de Sequência Molecular , Transcriptoma , Humanos , Anotação de Sequência Molecular/métodos , Software , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Isoformas de Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Nucleic Acids Res ; 52(5): e28, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340337

RESUMO

Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.


Assuntos
Processamento Alternativo , Transcriptoma , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Nucleotídeos , Splicing de RNA , Análise de Sequência de RNA , Especificidade da Espécie , Transcriptoma/genética , Software
4.
Genome Biol ; 24(1): 286, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082294

RESUMO

Long-read RNA sequencing has emerged as a powerful tool for transcript discovery, even in well-annotated organisms. However, assessing the accuracy of different methods in identifying annotated and novel transcripts remains a challenge. Here, we present SQANTI-SIM, a versatile tool that wraps around popular long-read simulators to allow precise management of transcript novelty based on the structural categories defined by SQANTI3. By selectively excluding specific transcripts from the reference dataset, SQANTI-SIM effectively emulates scenarios involving unannotated transcripts. Furthermore, the tool provides customizable features and supports the simulation of additional types of data, representing the first multi-omics simulation tool for the lrRNA-seq field.


Assuntos
Benchmarking , Transcriptoma , Análise de Sequência de RNA , Sequência de Bases , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica
5.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662216

RESUMO

Long-read RNA-seq has emerged as a powerful tool for transcript discovery, even in well-annotated organisms. However, assessing the accuracy of different methods in identifying annotated and novel transcripts remains a challenge. Here, we present SQANTI-SIM, a versatile utility that wraps around popular long-read simulators to allow precise management of transcript novelty based on the structural categories defined by SQANTI3. By selectively excluding specific transcripts from the reference dataset, SQANTI-SIM effectively emulates scenarios involving unannotated transcripts. Furthermore, the tool provides customizable features and supports the simulation of additional types of data, representing the first multi-omics simulation tool for the lrRNA-seq field. We demonstrate the effectiveness of SQANTI-SIM by benchmarking five transcriptome reconstruction pipelines using the simulated data.

6.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546854

RESUMO

The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.

7.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398077

RESUMO

The emergence of long-read RNA sequencing (lrRNA-seq) has provided an unprecedented opportunity to analyze transcriptomes at isoform resolution. However, the technology is not free from biases, and transcript models inferred from these data require quality control and curation. In this study, we introduce SQANTI3, a tool specifically designed to perform quality analysis on transcriptomes constructed using lrRNA-seq data. SQANTI3 provides an extensive naming framework to describe transcript model diversity in comparison to the reference transcriptome. Additionally, the tool incorporates a wide range of metrics to characterize various structural properties of transcript models, such as transcription start and end sites, splice junctions, and other structural features. These metrics can be utilized to filter out potential artifacts. Moreover, SQANTI3 includes a Rescue module that prevents the loss of known genes and transcripts exhibiting evidence of expression but displaying low-quality features. Lastly, SQANTI3 incorporates IsoAnnotLite, which enables functional annotation at the isoform level and facilitates functional iso-transcriptomics analyses. We demonstrate the versatility of SQANTI3 in analyzing different data types, isoform reconstruction pipelines, and sequencing platforms, and how it provides novel biological insights into isoform biology. The SQANTI3 software is available at https://github.com/ConesaLab/SQANTI3 .

9.
Genome Res ; 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29440222

RESUMO

High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique descriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate how the tool is effective in characterizing and describing the composition of the full-length transcriptome. We perform extensive evaluation of ToFU PacBio transcripts by PCR to reveal that an important number of the novel transcripts are technical artifacts of the sequencing approach and that SQANTI quality descriptors can be used to engineer a filtering strategy to remove them. Most novel transcripts in this curated transcriptome are novel combinations of existing splice sites, resulting more frequently in novel ORFs than novel UTRs, and are enriched in both general metabolic and neural-specific functions. We show that these new transcripts have a major impact in the correct quantification of transcript levels by state-of-the-art short-read-based quantification algorithms. By comparing our iso-transcriptome with public proteomics databases, we find that alternative isoforms are elusive to proteogenomics detection. SQANTI allows the user to maximize the analytical outcome of long-read technologies by providing the tools to deliver quality-evaluated and curated full-length transcriptomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...