Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Front Aging Neurosci ; 15: 1276376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035276

RESUMO

Parkinson's disease (PD) is characterized by neurodegeneration of nigral-striatal neurons in parallel with the formation of intra-neuronal α-synuclein aggregates, and these processes are exacerbated by neuro-inflammation. All 3 components of PD pathology are potentially treatable with biologics. Neurotrophins, such as glial derived neurotrophic factor or erythropoietin, can promote neural repair. Therapeutic antibodies can lead to disaggregation of α-synuclein neuronal inclusions. Decoy receptors can block the activity of pro-inflammatory cytokines in brain. However, these biologic drugs do not cross the blood-brain barrier (BBB). Biologics can be made transportable through the BBB following the re-engineering of the biologic as an IgG fusion protein, where the IgG domain targets an endogenous receptor-mediated transcytosis (RMT) system within the BBB, such as the insulin receptor or transferrin receptor. The receptor-specific antibody domain of the fusion protein acts as a molecular Trojan horse to ferry the biologic into brain via the BBB RMT pathway. This review describes the re-engineering of all 3 classes of biologics (neurotrophins, decoy receptor, therapeutic antibodies) for BBB delivery and treatment of PD. Targeting the RMT pathway at the BBB also enables non-viral gene therapy of PD using lipid nanoparticles (LNP) encapsulated with plasmid DNA encoding therapeutic genes. The surface of the lipid nanoparticle is conjugated with a receptor-specific IgG that triggers RMT of the LNP across the BBB in vivo.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37583474

RESUMO

Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.

3.
Trends Mol Med ; 29(5): 343-353, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907687

RESUMO

The COVID-19 mRNA vaccine was developed by the scalable manufacture of lipid nanoparticles (LNPs) that encapsulate mRNA within the lipid. There are many potential applications for this large nucleic acid delivery technology, including the delivery of plasmid DNA for gene therapy. However, gene therapy for the brain requires LNP delivery across the blood-brain barrier (BBB). It is proposed that LNPs could be reformulated for brain delivery by conjugation of receptor-specific monoclonal antibodies (MAbs) to the LNP surface. The MAb acts as a molecular Trojan horse to trigger receptor-mediated transcytosis (RMT) of the LNP across the BBB and subsequent localization to the nucleus for transcription of the therapeutic gene. Trojan horse LNPs could enable new approaches to gene therapy of the brain.


Assuntos
COVID-19 , Nanopartículas , Humanos , Vacinas contra COVID-19 , Encéfalo , Barreira Hematoencefálica , Terapia Genética , Anticorpos Monoclonais
4.
Pharm Res ; 40(3): 661-674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36829100

RESUMO

INTRODUCTION: A physiologically based pharmacokinetic (PBPK) model is developed that focuses on the kinetic parameters of drug association and dissociation with albumin, alpha-1 acid glycoprotein (AGP), and brain tissue proteins, as well as drug permeability at the blood-brain barrier, drug metabolism, and brain blood flow. GOAL: The model evaluates the extent to which plasma protein-mediated uptake (PMU) of drugs by brain influences the concentration of free drug both within the brain capillary compartment in vivo and the brain compartment. The model also studies the effect of drug binding to brain tissue proteins on the concentration of free drug in brain. METHODS: The steady state and non-steady state PBPK models are comprised of 11-12 variables, and 18-23 parameters, respectively. Two model drugs are analyzed: propranolol, which undergoes modest PMU from the AGP-bound pool, and imipramine, which undergoes a high degree of PMU from both the albumin-bound and AGP-bound pools in plasma. RESULTS: The free propranolol concentration in brain is under-estimated 2- to fourfold by in vitro measurements of free plasma propranolol, and the free imipramine concentration in brain is under-estimated by 18- to 31-fold by in vitro measurements of free imipramine in plasma. The free drug concentration in brain in vivo is independent of drug binding to brain tissue proteins. CONCLUSIONS: In vitro measurement of free drug concentration in plasma under-estimates the free drug in brain in vivo if PMU in vivo from either the albumin and/or the AGP pools in plasma takes place at the BBB surface.


Assuntos
Imipramina , Propranolol , Propranolol/farmacocinética , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Preparações Farmacêuticas , Albuminas/metabolismo , Ligação Proteica
5.
Mol Genet Metab Rep ; 33: 100930, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36324638

RESUMO

Neuronal ceroid lipofuscinosis type 1(CLN1 disease) is a rare autosomal recessive lysosomal storage disease caused by genetic defects of palmitoyl protein thioesterase-1(PPT1), leading to accumulation of lipofuscin granules in brain and progressive neurodegeneration. Psychomotor regression, seizures, loss of vision, and movement disorder begin in infancy and result in early death. Currently, no disease-modifying therapy is available. We report a 68-month-old boy with CLN1 treated on a compassionate use basis weekly for 26 months with a PPT1 enzyme fused to an anti-insulin receptor antibody (AGT-194), thereby enabling penetration of the blood-brain barrier (BBB). During treatment, no side effects were observed, while seizure frequency decreased, life quality improved, and the boy's general condition remained stable. This case documents for the first time that treatment of CLN1 is principally feasible by an intravenous BBB penetrating enzyme replacement therapy using PPT1 fused with the human insulin receptor. Monitoring of side effects raised no unacceptable or unexpected safety concerns.Observed improvement of life quality related to ameliorated epilepsy control raises hope that further robust clinical trials including patients in earlier stages of disease will show positive results.

6.
Pharmaceutics ; 14(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745855

RESUMO

The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.

7.
Adv Drug Deliv Rev ; 184: 114234, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307484

RESUMO

The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.


Assuntos
Barreira Hematoencefálica , Doenças por Armazenamento dos Lisossomos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Hidrolases/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Proteínas Recombinantes de Fusão
8.
Pharmaceutics ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678722

RESUMO

This Special Issue of Pharmaceutics, "Advanced Blood-Brain Barrier Drug Delivery," comprises 16 articles or reviews, which cover a cross-section of brain drug delivery for either small-molecule or large-molecule therapeutics [...].

9.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205013

RESUMO

We develop and analyze mathematical models for receptor-mediated transcytosis of monoclonal antibodies (MAb) targeting the transferrin receptor (TfR) or the insulin receptor (IR), which are expressed at the blood-brain barrier (BBB). The mass-action kinetic model for both the TfR and IR antibodies were solved numerically to generate predictions for the concentrations of all species in all compartments considered. Using these models, we estimated the rates of MAb endocytosis into brain capillary endothelium, which forms the BBB in vivo, the rates of MAb exocytosis from the intra-endothelial compartment into brain extracellular space, and the rates of receptor recycling from the endothelial space back to the luminal endothelial plasma membrane. Our analysis highlights the optimal rates of MAb association with the targeted receptor. An important role of the endogenous ligand, transferrin (Tf) or insulin, in receptor-mediated-transport (RMT) of the associated MAb was found and was attributed to the five order magnitude difference between plasma concentrations of Tf (25,000 nM) and insulin (0.3 nM). Our modeling shows that the very high plasma concentration of Tf leads to only 5% of the endothelial TfR expressed on the luminal endothelial membrane.

10.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35056060

RESUMO

Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.

11.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207605

RESUMO

Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.

12.
Pharmaceutics ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911688

RESUMO

Non-invasive brain delivery of neurotherapeutics is challenging due to the blood-brain barrier. The revived interest in transferrin receptor antibodies (TfRMAbs) as brain drug-delivery vectors has revealed the effect of dosing regimen, valency, and affinity on brain uptake, TfR expression, and Fc-effector function side effects. These studies have primarily used monovalent TfRMAbs with a human constant region following acute intravenous dosing in mice. The effects of a high-affinity bivalent TfRMAb with a murine constant region, without a fusion partner, following extravascular dosing in mice are, however, not well characterized. Here we elucidate the plasma pharmacokinetics and safety of a high-affinity bivalent TfRMAb with a murine constant region following acute and chronic subcutaneous dosing in adult C57BL/6J male mice. Mice received a single (acute dosing) 3 mg/kg dose, or were treated for four weeks (chronic dosing). TfRMAb and control IgG1 significantly altered reticulocyte counts following acute and chronic dosing, while other hematologic parameters showed minimal change. Chronic TfRMAb dosing did not alter plasma- and brain-iron measurements, nor brain TfR levels, however, it significantly increased splenic-TfR and -iron. Plasma concentrations of TfRMAb were significantly lower in mice chronically treated with IgG1 or TfRMAb. Overall, no injection related reactions were observed in mice.

13.
Sci Rep ; 10(1): 13334, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770132

RESUMO

Niemann-Pick C1 (NPC1) is a lysosomal cholesterol storage disorder, that severely affects the brain, and is caused by mutations in the NPC1 gene, which encodes an intracellular membrane transporter of non-esterified cholesterol. Therapeutic options for NPC1 are few, and classical enzyme replacement therapy with the recombinant protein is not possible as the NPC1 gene product is an insoluble membrane protein, which increases the need for development of gene therapy for NPC1. While viral based gene therapy is under development, it is important to investigate alternative approaches to brain gene therapy without viral vectors. The present work develops a plasmid DNA approach to gene therapy of NPC1 using Trojan horse liposomes (THLs), wherein the plasmid DNA is encapsulated in 100 nm pegylated liposomes, which are targeted to organs with a monoclonal antibody against the mouse transferrin receptor. THLs were encapsulated with a 8.0 kb plasmid DNA encoding the 3.9 kb human NPC1 open reading frame, under the influence of a 1.5 kb platelet derived growth factor B (PDGFB) promoter. THLs were administered weekly beginning at 6-7 weeks in the NPC1-/- null mouse, and delivery of the plasmid DNA, and NPC1 mRNA expression in brain, spleen, and liver were confirmed by quantitative PCR. THL treatment reduced tissue inclusion bodies in brain, and peripheral organs, but did not prolong lifespan in these mice. The work suggests that early treatment after birth may be required to reverse this disease model with NPC1 gene replacement therapy.


Assuntos
DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipossomos/química , Plasmídeos/genética , Receptores da Transferrina/genética , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Proteína C1 de Niemann-Pick , Fases de Leitura Aberta/genética , RNA Mensageiro/genética
14.
Mol Pharm ; 17(8): 2831-2839, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32579360

RESUMO

Erythropoietin (EPO), a hematopoietic growth factor and a promising therapy for Alzheimer's disease, has low permeability across the blood-brain barrier. The transferrin receptor antibody fused to EPO (TfRMAb-EPO) is a chimeric monoclonal antibody that ferries EPO into the brain via the transvascular route. However, TfRMAbs have Fc-effector function-related adverse effects including reticulocyte suppression. To overcome this, we recently developed an effectorless TfRMAb-EPO fusion protein, designated TfRMAb-N292G-EPO, by eliminating the Fc N-linked glycosylation site at position 292 of the antibody heavy chain. The mutant fusion protein showed enhanced plasma clearance and dramatically reduced plasma concentrations compared with the wild-type (WT) nonmutant fusion protein. This increased clearance of the aglycosylated TfRMAb is expected to increase the injection dose of the mutant fusion protein. To provide a basis for future therapeutic uses of this IgG-neurotrophin fusion protein, the current study aimed to characterize the pharmacokinetic profile of this effectorless TfRMAb-N292G-EPO at different doses following different routes of administration in the mouse. Adult C57BL/6J male mice were injected with a single dose (3, 6, 9, or 20 mg/kg; n = 3-6 per dose) of TfRMAb-N292G-EPO through either the subcutaneous (SQ) or intraperitoneal (IP) route. TfRMAb-N292G-EPO plasma concentrations were determined using an enzyme-linked immunosorbent assay. Mice were sacrificed 24 h after injection, and terminal blood was used for a complete blood count. Brain concentrations in the WT- and mutant fusion protein-treated mice were compared. We observed stark differences in the plasma pharmacokinetics of TfRMAb-N292G-EPO between the IP and SQ routes of administration. Dose escalation from 3 to 20 mg/kg increased the plasma Cmax only 3.5-fold for the SQ route, compared with a 35-fold increase for the IP route. The plasma Cmax was 15.0 ± 2.0, 21.3 ± 4.1, 21.3 ± 6.4, and 52.8 ± 27.9 ng/mL following SQ injection and 288 ± 47, 389 ± 154, 633 ± 194, and 10,066 ± 7059 ng/mL following IP injection for 3, 6, 9, and 20 mg/kg doses, respectively. The plasma Cmax following the SQ route was therefore 19- to 190-fold lower than that following the IP route. This finding is consistent with a 31-fold higher apparent clearance following the SQ route compared with the IP route at the highest dose administered. The brain concentrations in the mice treated with a 3 mg/kg dose of the mutant fusion protein were lower than those in the nonmutant WT-treated mice. No reticulocyte suppression was observed at the 3 mg/kg SQ dose of TfRMAb-N292G-EPO. However, reticulocyte suppression increased with an increase in dose and area under the plasma concentration-time curve (AUC) for both the IP and SQ routes. Overall, elimination of Fc N-linked glycosylation, to mitigate TfRMAb effector function side effects, has a profound effect on the plasma exposure of TfRMAb-N292G-EPO at therapeutic as well as high doses (3-20 mg/kg). This effect is more pronounced following SQ injection. The low plasma concentrations of the mutant fusion protein following a 3 mg/kg dose resulted in negligible brain uptake. The beneficial rescue of reticulocyte reduction by the N292G mutation is a function of AUC and is negated at high doses of the N292G mutant.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Eritropoetina/administração & dosagem , Eritropoetina/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Glicosilação , Imunoglobulina G/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Permeabilidade/efeitos dos fármacos
15.
Front Physiol ; 11: 398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457645

RESUMO

A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an "in vitro" preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.

16.
Mol Pharm ; 17(6): 2165-2174, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315188

RESUMO

Trojan horse liposomes (THLs) are a form of ligand-targeted nanomedicine, where a plasmid DNA is encapsulated in the interior of a 100-150 nm pegylated liposome, and the tips of a fraction of the surface pegylated strands are covalently linked to a receptor-specific monoclonal antibody (MAb) via a thio-ether linkage. The goal of this work was to develop a lyophilization methodology that enables retention of the structure and function of the THLs following the freeze-drying/hydration process. THL fusion and leakage of plasmid DNA were observed with several lyoprotectants, including trehalose, hyaluronic acid, γ-cyclodextrin, or sulfobutylether-ß-cyclodextrin. However, the use of hydroxypropyl-γ-cyclodextrin, at a 40:1 wt/wt ratio relative to the THL phospholipid, eliminated liposome fusion and produced high retention of encapsulated plasmid DNA and THL-mediated gene expression after lyophilization followed by hydration. The freeze-dried THL cake was amorphous without cavitation, and the diameters and functional properties of the THLs were preserved following hydration of cakes stored for at least six months. Intravenous administration of the hydrated freeze-dried THLs in the Rhesus monkey demonstrated the safety of the formulation. Blood plasmid DNA was measured with a quantitative polymerase chain reaction method, which enabled a pharmacokinetics analysis of the blood clearance of the THL-encapsulated plasmid DNA in the primate. The work shows that optimization of the lyoprotectant enables long-term storage of the MAb-targeted DNA encapsulated liposomes in the freeze-dried state.


Assuntos
Liofilização/métodos , Lipossomos/química , Plasmídeos/genética , Animais , Anticorpos Monoclonais , Humanos , Macaca mulatta
17.
Front Med Technol ; 2: 602236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047884

RESUMO

Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.

19.
Sci Rep ; 9(1): 18632, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819150

RESUMO

Most lysosomal storage disorders affect the central nervous system. However, lysosomal enzymes do not cross the blood-brain barrier (BBB), and intravenous enzyme infusion is not effective for the brain. Lysosomal enzymes can be re-engineered for BBB transport as IgG-enzyme fusion proteins, where the IgG domain is a monoclonal antibody (MAb) against an endogenous BBB receptor/transporter, and which acts as a molecular Trojan horse to deliver the enzyme to brain. However, the problem is retention of high enzyme activity following enzyme fusion to the IgG. The present investigation shows this is possible with a versatile approach that employs fusion of the enzyme to either the IgG heavy chain or light chain using a long flexible linker. The model IgG is a chimeric monoclonal antibody (MAb) against the human insulin receptor (HIR). The enzyme activity of the HIRMAb-enzyme fusion protein is preserved for hexosaminidase A, which is mutated in Tay Sachs disease, for protein palmitoylthioesterase-1, which is mutated in Batten disease type 1, acid sphingomyelinase, which is mutated in Niemann Pick disease type A, and beta galactosidase-1, which is mutated in GM1 gangliosidosis.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Imunoglobulina G/farmacologia , Engenharia de Proteínas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Imunoglobulina G/química , Lisossomos/química
20.
Alzheimers Dement (N Y) ; 5: 627-636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660425

RESUMO

INTRODUCTION: Low blood-brain barrier (BBB) penetration and hematopoietic side effects limit the therapeutic development of erythropoietin (EPO) for Alzheimer's disease (AD). A fusion protein of EPO and a chimeric monoclonal antibody targeting the mouse transferrin receptor (cTfRMAb) has been engineered. The latter drives EPO into the brain via receptor-mediated transcytosis across the BBB and increases its peripheral clearance to reduce hematopoietic side effects of EPO. Our previous work shows the protective effects of this BBB-penetrating EPO in AD mice but hematologic effects have not been studied. Herein, we investigate the hematologic safety and therapeutic effects of chronic cTfRMAb-EPO dosing, in comparison to recombinant human EPO (rhu-EPO), in AD mice. METHODS: Male APPswe PSEN1dE9 (APP/PS1) mice (9.5 months) were treated with saline (n = 11), and equimolar doses of cTfRMAb-EPO (3 mg/kg, n = 7), or rhu-EPO (0.6 mg/kg, n = 9) 2 days/week subcutaneously for 6 weeks, compared to saline-treated wild-type mice (n = 10). At 6 weeks, exploration and memory were assessed, and mice were sacrificed at 8 weeks. Spleens were weighed, and brains were evaluated for amyloid beta (Aß) load and synaptophysin. Blood was collected at 4, 6 and 8 weeks for a complete blood count and white blood cells differential. RESULTS: cTfRMAb-EPO transiently increased reticulocyte counts after 4 weeks, followed by normalization of reticulocytes at 6 and 8 weeks. rhu-EPO transiently increased red blood cell count, hemoglobin and hematocrit, and significantly decreased mean corpuscular volume and reticulocytes at 4 weeks, which remained low at 6 weeks. At 8 weeks, a significant decline in red blood cell indices was observed with rhu-EPO treatment. Exploration and cognitive deficits were significantly worse in APP/PS1-rhu-EPO mice. Both cTfRMAb-EPO and rhu-EPO decreased 6E10-positive brain Aß load; however, cTfRMAb-EPO and not rhu-EPO selectively reduced brain Aß1-42 and elevated synaptophysin expression. DISCUSSION: Chronic treatment with cTfRMAb-EPO results in better hematologic safety, behavioral, and therapeutic indices compared with rhu-EPO, supporting the development of this BBB-penetrable EPO analog for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...