Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Health Care ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37545265

RESUMO

BACKGROUND: Understanding complex systems is made easier with the tools provided by the theory of nonlinear dynamic systems. It provides novel ideas, algorithms, and techniques for signal processing, analysis, and classification. Presently, these ideas are being applied to the investigation of how physiological signals evolve. OBJECTIVE: The study applies nonlinear dynamics theory to electroencephalogram (EEG) signals to better comprehend the range of alcoholic mental states. One of the main contributions of this paper is an algorithm for automatically distinguishing between sober and drunken EEG signals based on their salient features. METHODS: The study utilized various entropy-based features, including ApEn, SampEn, Shannon and Renyi entropies, PE, TS, FE, WE, and KSE, to extract information from EEG signals. To identify the most relevant features, the study employed ranking methods like T-test, Wilcoxon, and Bhattacharyya, and trained SVM classifiers with the selected features. The Bhattacharyya ranking method was found to be the most effective in achieving high classification accuracy, sensitivity, and specificity. RESULTS: Classification accuracy of 95.89%, the sensitivity of 94.43%, and specificity of 96.67% are achieved by the SVM classifier with radial basis function (RBF) for polynomial Kernel using the Bhattacharyya ranking method. CONCLUSION: From the result, it is clear that the model serves as a cost-effective and accurate decision-support tool for doctors in diagnosing alcoholism and for rehabilitation centres to monitor the effectiveness of interventions aimed at mitigating or reversing brain damage caused by alcoholism.

2.
Cureus ; 15(7): e42162, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37602059

RESUMO

Introduction It is hypothesized that bronchoalveolar lavage (BAL) neutrophilia, Krebs von den Lungen-6 (KL-6), and C-reactive protein (CRP) predict the severity of chronic fibrosing interstitial lung diseases (CF-ILDs). Methods This cross-sectional study enrolled 30 CF-ILD patients. Using Pearson's correlation analysis, BAL neutrophils, KL-6, and CRP were correlated with forced vital capacity (FVC), diffusing lung capacity for carbon monoxide (DLCO), six-minute walk distance (6MWD), partial pressure of oxygen (PaO2), computed tomography fibrosis score (CTFS), and pulmonary artery systolic pressure (PASP). Using the receiver operator characteristic (ROC) curve, BAL KL-6 and CRP were evaluated against FVC% and DLCO% in isolation and combination with BAL neutrophilia for predicting the severity of CF-ILDs. Results BAL neutrophilia significantly correlated only with FVC% (r = -0.38, P = 0.04) and DLCO% (r = -0.43, P = 0.03). BAL KL-6 showed a good correlation with FVC% (r = -0.44, P < 0.05) and DLCO% (r = -0.50, P = 0.02), while BAL CRP poorly correlated with all parameters (r = 0.0-0.2). Subset analysis of BAL CRP in patients with CTFS ≤ 15 showed a better association with FVC% (r = -0.28, P = 0.05) and DLCO% (r = -0.36, P = 0.04). BAL KL-6 cut-off ≥ 72.32 U/ml and BAL CRP ≥ 14.55 mg/L predicted severe disease with area under the curve (AUC) values of 0.77 and 0.71, respectively. The combination of BAL neutrophilia, KL-6, and CRP predicted severity with an AUC value of 0.89. Conclusion The combination of BAL neutrophilia, KL-6, and CRP facilitates the severity stratification of CF-ILDs complementing existing severity parameters.

3.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502144

RESUMO

According to the standard paradigm, white box cryptographic primitives are used to block black box attacks and protect sensitive information. This is performed to safeguard the protected information and keys against black box assaults. An adversary in such a setting is aware of the method and can analyze many system inputs and outputs, but is blind to the specifics of how a critical instantiation primitive is implemented. This is the focus of white-box solutions, which are designed to withstand attacks that come from the execution environment. This is significant because an attacker may obtain unrestricted access to the program's execution in this environment. The purpose of this article is to assess the efficiency of white-box implementations in terms of security. Our contribution is twofold: first, we explore the practical implementations of white-box approaches, and second, we analyze the theoretical foundations upon which these implementations are built. First, a research proposal is crafted that details white-box applications of DES and AES encryption algorithms. To begin, this preparation is necessary. The research effort planned for this project also includes cryptanalysis of these techniques. Once the general cryptanalysis results have been examined, the white-box design approaches will be covered. We have decided to launch an investigation into creating a theoretical model for white box, since no prior formal definitions have been offered, and suggested implementations have not been accompanied by any assurance of security. This is due to the fact that no formal definition of "white box" has ever been provided. In this way lies the explanation for why this is the situation. We define WBC to encompass the security requirements of WBC specified over a white box cryptography technology and a security concept by studying formal models of obfuscation and shown security. This definition is the product of extensive investigation. This state-of-the-art theoretical model provides a setting in which to investigate the security of white-box implementations, leading to a wide range of positive and negative conclusions. As a result, this paper includes the results of a Digital Signature Algorithm (DSA) study which may be put to use in the real world with signature verification. Possible future applications of White Box Cryptography (WBC) research findings are discussed in light of these purposes and areas of investigation.


Assuntos
Algoritmos , Segurança Computacional , Modelos Teóricos
4.
J Healthc Eng ; 2022: 2354866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256896

RESUMO

Medical diagnosis is always a time and a sensitive approach to proper medical treatment. Automation systems have been developed to improve these issues. In the process of automation, images are processed and sent to the remote brain for processing and decision making. It is noted that the image is written for compaction to reduce processing and computational costs. Images require large storage and transmission resources to perform their operations. A good strategy for pictures compression can help minimize these requirements. The question of compressing data on accuracy is always a challenge. Therefore, to optimize imaging, it is necessary to reduce inconsistencies in medical imaging. So this document introduces a new image compression scheme called the GenPSOWVQ method that uses a recurrent neural network with wavelet VQ. The codebook is built using a combination of fragments and genetic algorithms. The newly developed image compression model attains precise compression while maintaining image accuracy with lower computational costs when encoding clinical images. The proposed method was tested using real-time medical imaging using PSNR, MSE, SSIM, NMSE, SNR, and CR indicators. Experimental results show that the proposed GenPSOWVQ method yields higher PSNR SSIMM values for a given compression ratio than the existing methods. In addition, the proposed GenPSOWVQ method yields lower values of MSE, RMSE, and SNR for a given compression ratio than the existing methods.


Assuntos
Compressão de Dados , Processamento de Imagem Assistida por Computador , Algoritmos , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
5.
J Healthc Eng ; 2022: 5821938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242297

RESUMO

In the microarray gene expression data, there are a large number of genes that are expressed at varying levels of expression. Given that there are only a few critically significant genes, it is challenging to analyze and categorize datasets that span the whole gene space. In order to aid in the diagnosis of cancer disease and, as a consequence, the suggestion of individualized treatment, the discovery of biomarker genes is essential. Starting with a large pool of candidates, the parallelized minimal redundancy and maximum relevance ensemble (mRMRe) is used to choose the top m informative genes from a huge pool of candidates. A Genetic Algorithm (GA) is used to heuristically compute the ideal set of genes by applying the Mahalanobis Distance (MD) as a distance metric. Once the genes have been identified, they are input into the GA. It is used as a classifier to four microarray datasets using the approved approach (mRMRe-GA), with the Support Vector Machine (SVM) serving as the classification basis. Leave-One-Out-Cross-Validation (LOOCV) is a cross-validation technique for assessing the performance of a classifier. It is now being investigated if the proposed mRMRe-GA strategy can be compared to other approaches. It has been shown that the proposed mRMRe-GA approach enhances classification accuracy while employing less genetic material than previous methods. Microarray, Gene Expression Data, GA, Feature Selection, SVM, and Cancer Classification are some of the terms used in this paper.


Assuntos
Neoplasias , Biomarcadores , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Projetos de Pesquisa , Máquina de Vetores de Suporte
6.
J Healthc Eng ; 2022: 5171016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251570

RESUMO

Due to the increasing number of medical imaging images being utilized for the diagnosis and treatment of diseases, lossy or improper image compression has become more prevalent in recent years. The compression ratio and image quality, which are commonly quantified by PSNR values, are used to evaluate the performance of the lossy compression algorithm. This article introduces the IntOPMICM technique, a new image compression scheme that combines GenPSO and VQ. A combination of fragments and genetic algorithms was used to create the codebook. PSNR, MSE, SSIM, NMSE, SNR, and CR indicators were used to test the suggested technique using real-time medical imaging. The suggested IntOPMICM approach produces higher PSNR SSIM values for a given compression ratio than existing methods, according to experimental data. Furthermore, for a given compression ratio, the suggested IntOPMICM approach produces lower MSE, RMSE, and SNR values than existing methods.


Assuntos
Compressão de Dados , Procedimentos de Cirurgia Plástica , Algoritmos , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Comput Intell Neurosci ; 2022: 8421434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36911247

RESUMO

A significant study has been undertaken in the areas of health care and administration of cutting-edge artificial intelligence (AI) technologies throughout the previous decade. Healthcare professionals studied smart gadgets and other medical technologies, along with the AI-based Internet of Things (IoT) (AIoT). Connecting the two regions makes sense in terms of improving care for rural and isolated resident individuals. The healthcare industry has made tremendous strides in efficiency, affordability, and usefulness as a result of new research options and major cost reductions. This includes instructions (AIoT-based) medical advancements can be both beneficial and detrimental. While the IoT concept undoubtedly offers a number of benefits, it also poses fundamental security and privacy concerns regarding medical data. However, resource-constrained AIoT devices are vulnerable to a number of assaults, which can significantly impair their performance. Cryptographic algorithms used in the past are inadequate for safeguarding IoT-enabled networks, presenting substantial security risks. The AIoT is made up of three layers: perception, network, and application, all of which are vulnerable to security threats. These threats can be aggressive or passive in nature, and they can originate both within and outside the network. Numerous IoT security issues, including replay, sniffing, and eavesdropping, have the ability to obstruct network communication. The AIoT-H application is likely to be explored in this research article due to its potential to aid with existing and different technologies, as well as bring useful solutions to healthcare security challenges. Additionally, every day, several potential problems and inconsistencies with the AIoT-H technique have been discovered.


Assuntos
Inteligência Artificial , Segurança Computacional , Humanos , Atenção à Saúde , Algoritmos , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...