Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1831, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418462

RESUMO

Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.


Assuntos
Escherichia coli , Histamina , Humanos , Histamina/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Escherichia coli/metabolismo , Receptores Histamínicos H2/metabolismo
2.
Elife ; 122024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259172

RESUMO

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Translocação Genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Mutação
3.
Nat Commun ; 14(1): 6196, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794019

RESUMO

Sphingolipids are structural membrane components that also function in cellular stress responses. The serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in sphingolipid biogenesis. Its activity is tightly regulated through multiple binding partners, including Tsc3, Orm proteins, ceramides, and the phosphatidylinositol-4-phosphate (PI4P) phosphatase Sac1. The structural organization and regulatory mechanisms of this complex are not yet understood. Here, we report the high-resolution cryo-EM structures of the yeast SPT in complex with Tsc3 and Orm1 (SPOT) as dimers and monomers and a monomeric complex further carrying Sac1 (SPOTS). In all complexes, the tight interaction of the downstream metabolite ceramide and Orm1 reveals the ceramide-dependent inhibition. Additionally, observation of ceramide and ergosterol binding suggests a co-regulation of sphingolipid biogenesis and sterol metabolism within the SPOTS complex.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Adv ; 8(41): eabn6845, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223470

RESUMO

Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Escherichia coli , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Detergentes/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipídeo A , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Conformação Proteica
5.
Sci Adv ; 7(46): eabj3221, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767441

RESUMO

Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.

6.
Nat Microbiol ; 6(9): 1129-1139, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34267357

RESUMO

Nitrate is an abundant nutrient and electron acceptor throughout Earth's biosphere. Virtually all nitrate in nature is produced by the oxidation of nitrite by the nitrite oxidoreductase (NXR) multiprotein complex. NXR is a crucial enzyme in the global biological nitrogen cycle, and is found in nitrite-oxidizing bacteria (including comammox organisms), which generate the bulk of the nitrate in the environment, and in anaerobic ammonium-oxidizing (anammox) bacteria which produce half of the dinitrogen gas in our atmosphere. However, despite its central role in biology and decades of intense study, no structural information on NXR is available. Here, we present a structural and biochemical analysis of the NXR from the anammox bacterium Kuenenia stuttgartiensis, integrating X-ray crystallography, cryo-electron tomography, helical reconstruction cryo-electron microscopy, interaction and reconstitution studies and enzyme kinetics. We find that NXR catalyses both nitrite oxidation and nitrate reduction, and show that in the cell, NXR is arranged in tubules several hundred nanometres long. We reveal the tubule architecture and show that tubule formation is induced by a previously unidentified, haem-containing subunit, NXR-T. The results also reveal unexpected features in the active site of the enzyme, an unusual cofactor coordination in the protein's electron transport chain, and elucidate the electron transfer pathways within the complex.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Microscopia Crioeletrônica , Cristalografia por Raios X , Cinética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução , Oxirredutases/genética
7.
Nat Commun ; 11(1): 6008, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243981

RESUMO

Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (ß1-ß2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Mutagênese Sítio-Dirigida , Oxirredução , Subunidades Proteicas/genética , Prótons , Ubiquinona/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
8.
ACS Nano ; 14(7): 8181-8190, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32551529

RESUMO

Well-defined multiwalled carbon nanotube structures are generated on stainless steel AISI 304 (EN AW 1.4301) by chemical vapor deposition. Pulsed laser-induced dewetting (PLiD) of the surface, by 532 nm nanosecond laser pulses, is utilized for the preparation of metal oxide nanoparticle fields with a defined particle number per area. The reduction of the precursor particles is achieved in an Ar/H2 (10% H2) atmosphere at 750 °C, thereby generating catalytic nanoparticles (c-NPs) for carbon nanotube (CNT) growth. Ethylene is used as a precursor gas for CNT growth. CNT lengths and morphology are directly related to the c-NP aerial density, which is dependent on the number of dewetting cycles during the PLiD process. Within a narrow window of c-NP per area, vertically aligned carbon nanotubes of great lengths are obtained. For more intense laser treatments, three-dimensional dewetting occurs and results in the formation of cauliflower-like structures. The laser process enables the creation of all kinds of CNT morphologies nearby on the microscale.

9.
ACS Nano ; 14(8): 9972-9978, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589396

RESUMO

Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.


Assuntos
Carbono , Elétrons , Microscopia Crioeletrônica , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
10.
Curr Opin Struct Biol ; 63: 1-9, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32058886

RESUMO

Respiratory complex I is an intricate multi-subunit membrane protein with a central function in aerobic energy metabolism. During the last years, structures of mitochondrial complex I and respiratory supercomplexes were determined by cryo-EM at increasing resolution. Structural and computational studies have shed light on the dynamics of proton translocation pathways, the interaction of complex I with lipids and the unusual access pathway of ubiquinone to the active site. Recent advances in understanding complex I function include characterization of specific conformational changes that are critical for proton pumping. Cryo-EM structures of the NADH dehydrogenase-like (NDH) complex of photosynthesis and a bacterial membrane bound hydrogenase (MBH) have provided a broader perspective on the complex I superfamily.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Animais , Sítios de Ligação , Evolução Biológica , Catálise , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Água/química
11.
Biochim Biophys Acta Bioenerg ; 1861(3): 148153, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935361

RESUMO

Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Ubiquinona/química , Ubiquinona/metabolismo
12.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844670

RESUMO

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/ultraestrutura , Yarrowia/ultraestrutura , Trifosfato de Adenosina/química , Complexo I de Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Membranas Mitocondriais , Conformação Proteica , Yarrowia/genética
13.
ACS Nano ; 13(6): 7185-7190, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31117383

RESUMO

In electron cryo-microscopy, structure determination of protein molecules is frequently hampered by adsorption of the particles to the support film material, typically amorphous carbon. Here, we report that pyrene derivatives with one or two polyglycerol (PG) side chains bind to the amorphous carbon films, forming a biorepulsive hydrogel layer so that the number of protein particles in the vitreous ice drastically increases. This approach could be extended by adding a hydrogel-functionalized carbon nanotube network (HyCaNet, the hydrogel again being formed from the PG-pyrene derivatives), which stabilized the protein-containing thin ice films during imaging with the electron beam. The stabilization resulted in reduced particle motion by up to 70%. These substrates were instrumental for determining the structure of a large membrane protein complex.


Assuntos
Microscopia Crioeletrônica/métodos , Hidrogéis/química , Proteínas de Membrana/química , Detergentes/química , Glicerol/química , Proteínas de Membrana/ultraestrutura , Nanotubos/química , Polímeros/química , Estabilidade Proteica , Pirenos/química , Vitrificação
14.
Elife ; 72018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277212

RESUMO

Mitochondrial complex I has a key role in cellular energy metabolism, generating a major portion of the proton motive force that drives aerobic ATP synthesis. The hydrophilic arm of the L-shaped ~1 MDa membrane protein complex transfers electrons from NADH to ubiquinone, providing the energy to drive proton pumping at distant sites in the membrane arm. The critical steps of energy conversion are associated with the redox chemistry of ubiquinone. We report the cryo-EM structure of complete mitochondrial complex I from the aerobic yeast Yarrowia lipolytica both in the deactive form and after capturing the enzyme during steady-state activity. The site of ubiquinone binding observed during turnover supports a two-state stabilization change mechanism for complex I.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Yarrowia/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestrutura , Mitocôndrias/ultraestrutura , Modelos Moleculares , Oxirredução , Consumo de Oxigênio , Conformação Proteica , Força Próton-Motriz , Homologia de Sequência de Aminoácidos , Yarrowia/genética , Yarrowia/ultraestrutura
15.
ACS Nano ; 11(6): 6467-6473, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28598595

RESUMO

We developed a method to improve specimen preparation for electron cryo-microscopy of membrane proteins. The method features a perforated hydrogel nanomembrane that stabilizes the thin film of aqueous buffer spanning the holes of holey carbon films, while at the same time preventing the depletion of protein molecules from these holes. The membrane is obtained by cross-linking of thiolated polyglycerol dendrimer films on gold, which self-perforate upon transfer to holey carbon substrates, forming a sub-micron-sized hydrogel network. The perforated nanomembrane improves the distribution of the protein molecules in the ice considerably. This facilitates data acquisition as demonstrated with two eukaryotic membrane protein complexes.

16.
Biochim Biophys Acta ; 1857(12): 1935-1942, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693469

RESUMO

Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Mitocôndrias/enzimologia , Transferases de Grupos de Enxofre/metabolismo , Enxofre/metabolismo , Yarrowia/enzimologia , Catálise , Cisteína/análogos & derivados , Cisteína/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Transferases de Grupos de Enxofre/química , Transferases de Grupos de Enxofre/genética , Transferases de Grupos de Enxofre/ultraestrutura , Yarrowia/genética , Yarrowia/ultraestrutura
17.
FEBS J ; 283(20): 3807-3820, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27586496

RESUMO

The Crenarchaeon Ignicoccus hospitalis lives in symbiosis with Nanoarchaeum equitans providing essential cell components and nutrients to its symbiont. Ignicoccus hospitalis shows an intriguing morphology that points toward an evolutionary role in driving compartmentalization. Therefore, the bioenergetics of this archaeal host-symbiont system remains a pressing question. To date, the only electron acceptor described for I. hospitalis is elemental sulfur, but the organism comprises genes that encode for enzymes involved in nitrogen metabolism, e.g., one nitrate reductase and two octaheme cytochrome c, Igni_0955 (IhOCC) and Igni_1359. Herein, we detail functional and structural studies of the highly abundant IhOCC, including an X-ray crystal structure at 1.7 Å resolution, the first three-dimensional structure of an archaeal OCC. The trimeric IhOCC is membrane associated and exhibits significant structural and functional differences to previously characterized homologs within the hydroxylamine oxidoreductases (HAOs) and octaheme cytochrome c nitrite reductases (ONRs). The positions and spatial arrangement of the eight hemes are highly conserved, but the axial ligands of the individual hemes 3, 6 and 7 and the protein environment of the active site show significant differences. Most notably, the active site heme 4 lacks porphyrin-tyrosine cross-links present in the HAO family. We show that IhOCC efficiently reduces nitrite and hydroxylamine, with possible relevance to detoxification or energy conservation. DATABASE: Structural data are available in the Protein Data Bank under the accession number 4QO5.


Assuntos
Proteínas Arqueais/química , Citocromos c/química , Desulfurococcaceae/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Citocromos a1/química , Citocromos a1/genética , Citocromos a1/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c1/química , Citocromos c1/genética , Citocromos c1/metabolismo , Desulfurococcaceae/genética , Desulfurococcaceae/metabolismo , Evolução Molecular , Genes Arqueais , Heme/química , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas , Eletricidade Estática
18.
Mol Cell ; 63(3): 445-56, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27373333

RESUMO

We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology.


Assuntos
Proteínas Fúngicas/química , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Yarrowia/enzimologia , Trifosfato de Adenosina/metabolismo , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Yarrowia/ultraestrutura
19.
PLoS One ; 8(9): e74707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073218

RESUMO

ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Chromatiaceae/enzimologia , Escherichia coli/enzimologia , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Adenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sulfato Adenililtransferase/metabolismo
20.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037219

RESUMO

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Methanobacteriaceae/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/química , Oxirredutases/química , Ligação Proteica , Estrutura Terciária de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...