Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928225

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.


Assuntos
Apoptose , Basigina , Proliferação de Células , Diterpenos , Leucemia Mieloide Aguda , Humanos , Basigina/metabolismo , Basigina/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
2.
J Oral Pathol Med ; 50(5): 502-509, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33275794

RESUMO

BACKGROUND: DNA-image cytometry (DNA-ICM) is able to detect gross alterations of cellular DNA-content representing aneuploidy, a biomarker of malignancy. A Health Canada-approved DNA-ICM system, ClearCyte® in combination with a cytopathologist's review, has demonstrated high sensitivity (89%) and specificity (97%) in identifying high-grade oral lesions. The study objective was to create an improved automated algorithm (iClearcyte) and test its robustness in differentiating high grade from benign reactive oral lesions without a cytopathologist's input. METHODS: A set of 214 oral brushing samples of oral cancer (n = 92), severe dysplasia (n = 20), reactive lesions (n = 52), and normal samples (n = 50) were spun down onto slides and stained using Feulgen-Thionin reaction. Following ClearCyte® scan, nuclear features were calculated, and nuclei categorized into "diploid," "hyperdiploid," "tetraploid," and "aneuploid" DNA ploidy groups by the ClearCyte® software. The samples were randomized into training and test sets (70:30) based on patient's age, sex, tobacco use, and lesion site risk. The training set was used to create a new algorithm which was then validated using the remaining samples in the test set, where sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. RESULTS: The proposed iClearCyte algorithm (>1 "aneuploid" cell or ≥ 1.7% combined "hyperdiploid" and "tetraploid" nuclei frequency) identified high-grade samples with sensitivity, specificity, PPV, and NPV of 100.0%, 86.7%, 89.7%, and 100.0%, respectively, in the test set. CONCLUSION: The iClearCyte test has potential to serve as a robust non-invasive automated oral cancer screening tool promoting early oral cancer detection and decreasing the number of unnecessary invasive biopsies.


Assuntos
Citometria por Imagem , Neoplasias Bucais , Algoritmos , Aneuploidia , Canadá , DNA , DNA de Neoplasias , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...