Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 1914, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177919

RESUMO

Bacteria are integral to marine carbon cycling. They transfer organic carbon to higher trophic levels and remineralise it into inorganic forms. Kelp forests are among the most productive ecosystems within the global oceans, yet the diversity and metabolic capacity of bacteria that transform kelp carbon is poorly understood. Here, we use 16S amplicon and metagenomic shotgun sequencing to survey bacterial communities associated with the surfaces of the giant kelp Macrocystis pyrifera and assess the capacity of these bacteria for carbohydrate metabolism. We find that Macrocystis-associated communities are distinct from the water column, and that they become more diverse and shift in composition with blade depth, which is a proxy for tissue age. These patterns are also observed in metagenomic functional profiles, though the broader functional groups-carbohydrate active enzyme families-are largely consistent across samples and depths. Additionally, we assayed more than 250 isolates cultured from Macrocystis blades and the surrounding water column for the ability to utilize alginate, the primary polysaccharide in Macrocystis tissue. The majority of cultured bacteria (66%) demonstrated this capacity; we find that alginate utilization is patchily distributed across diverse genera in the Bacteroidetes and Proteobacteria, yet can also vary between isolates with identical 16S rRNA sequences. The genes encoding enzymes involved in alginate metabolism were detected in metagenomic data across taxonomically diverse bacterial communities, further indicating this capacity is likely widespread amongst bacteria in kelp forests. Overall, the M. pyrifera epibiota shifts across a depth gradient, demonstrating a connection between bacterial assemblage and host tissue state.

2.
J Eukaryot Microbiol ; 59(5): 429-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020233

RESUMO

This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.


Assuntos
Eucariotos/classificação , Eucariotos/citologia , Eucariotos/fisiologia , Genoma , Filogenia , Terminologia como Assunto
3.
J Eukaryot Microbiol ; 53(3): 204-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16677344

RESUMO

The classification of the Foraminifera, a widely distributed group of largely marine protists, has traditionally been based on morphological characters. The most important of these are the composition and structure of the shell or "test." Here, we use both phylogenetic analysis of the genes for small subunit rRNA and beta-tubulin and ultrastructural analysis to document a reversion in wall type from more derived calcareous tests to an agglutinated test. These data indicate that the genus Miliammina, and possibly other members of the Rzehakinidae, should be placed in the Order Miliolida as opposed to their current assignment in Order Textulariida. We also address the effects this reversion may have had on the ability of rzehakinacids to effectively colonize marginal marine environments. Finally, the hypothesis that some multilocular agglutinated foraminiferans descended from calcareous lineages has implications for interpretation of the foraminiferal fossil record.


Assuntos
Eucariotos/classificação , Eucariotos/ultraestrutura , Filogenia , Animais , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr/genética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Tubulina (Proteína)/genética , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...