Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 217: 112659, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35763896

RESUMO

Clove (Syzygium aromaticum) is one of the useful herbal medicine to prevent the bacteria infection. This herbal medicine plant shows high antimicrobial, antioxidant, and anti-inflammation activities because the essential oil and extract of this herb contains a rich source of phenolic compounds. The important phenolic compound of the herb is eugenol. In this study, we endeavored to develop the flexible cellulosic textile nanocomposite by dipping the cellulosic textile in a nano emulsion containing clove herbal medicine (32%wt). This nanocomposite was subjected to detail analyzes using Fourier Transform Infrared Spectroscopy (FTIR), field-emission scanning electron microscope (FESEM) and gas chromatography-mass spectrometry (GC-MS). The mean size of this nano emulsion as measured by electron microscopy is between 100 and 300 nm. The presence of eugenol in this nano emulsion has been confirmed by GC-MS. The wound dressing shows high antimicrobial activity against E. coli (3 ± 0.11 mm), P. aeruginosa (2.8 ± 0.06 mm), S. epidemidis (2.9 ± 0.09 mm), and S. aureus (2.6 ± 0.07 mm). This nano composite showed significant improvement in in vivo wound healing and in vitro cellular compatibility. Nearly 85% of the operation wound was healed during14 days. Accordingly, cellulosic textile/clove wound dressing can be a potential candidate for biomedical application and pre-clinical surveys.


Assuntos
Anti-Infecciosos , Nanocompostos , Syzygium , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bandagens , Escherichia coli , Eugenol , Testes de Sensibilidade Microbiana , Nanocompostos/química , Staphylococcus aureus , Syzygium/química , Têxteis
2.
J Biomed Mater Res A ; 110(2): 341-352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34378857

RESUMO

Inflammation and infection are two main factors predisposing a wound to become a chronic one. Degradable wound dressings involving the controlled release of suitable drugs at the ulcer site are one of the solutions to make wounds healing progress smoothly and rapidly. In this research, biodegradable dressings made of polyglycerol sebacate/polycaprolactone (PGS/PCL) containing curcumin/ciprofloxacin (CUR/CIP) and simvastatin/ciprofloxacin (SIM/CIP) were prepared by using the coaxial electrospinning method. Transmission electron microscopy for uniform core/shell structure, swelling ratio, and drug release pattern of the wound dressings were evaluated. At the in vivo study, histometric, histopathologic, and collagen expression study was performed. The PGS/PCL samples containing SIM/CIP showed a burst release pattern of CIP with a delay in the release of SIM; meanwhile, in the samples containing CUR/CIP, both drugs showed a burst release behavior. No cytotoxicity response was observed in the study groups. The in vivo study showed that wound closure was almost completed only in the SIM/CIP group after 14 days. After 14 days, in the wound treated with SIM/CIP dressing, the amount of collagen deposition and angiogenesis was higher than that of the others. These results clearly showed the effect of SIM/CIP on the improvement of the wound healing efficiency in the long term (14 days) and the effect of CUR/CIP on wound contraction in the short term (4 day). It seems, therefore, that the use of SIM and CUR simultaneously in a wound dressing could cause a synergistic effect in the wound repair.


Assuntos
Ciprofloxacina , Curcumina , Animais , Antibacterianos/farmacologia , Bandagens , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Preparações de Ação Retardada/farmacologia , Ratos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Cicatrização
3.
Antioxidants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371338

RESUMO

Recently, increasing public concern about hygiene has been driving many studies to investigate antimicrobial and antiviral agents. However, the use of any antimicrobial agents must be limited due to their possible toxic or harmful effects. In recent years, due to previous antibiotics' lesser side effects, the use of herbal materials instead of synthetic or chemical drugs is increasing. Herbal materials are found in medicines. Herbs can be used in the form of plant extracts or as their active components. Furthermore, most of the world's populations used herbal materials due to their strong antimicrobial properties and primary healthcare benefits. For example, herbs are an excellent material to replace nanosilver as an antibiotic and antiviral agent. The use of nanosilver involves an ROS-mediated mechanism that might lead to oxidative stress-related cancer, cytotoxicity, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound healing. Therefore, existing antibiotic drugs can be replaced with biomaterials such as herbal medicine with high antimicrobial, antiviral, and antioxidant activity. This review paper highlights the antibacterial, antiviral, and radical scavenger (antioxidant) properties of herbal materials. Antimicrobial activity, radical scavenger ability, the potential for antimicrobial, antiviral, and anticancer agents, and efficacy in eliminating bacteria and viruses and scavenging free radicals in herbal materials are discussed in this review. The presented herbal antimicrobial agents in this review include clove, portulaca, tribulus, eryngium, cinnamon, turmeric, ginger, thyme, pennyroyal, mint, fennel, chamomile, burdock, eucalyptus, primrose, lemon balm, mallow, and garlic, which are all summarized.

4.
Materials (Basel) ; 13(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384813

RESUMO

Pharmaceutical nano-fibers have attracted widespread attention from researchers for reasons such as adaptability of the electro-spinning process and ease of production. As a flexible method for fabricating nano-fibers, electro-spinning is extensively used. An electro-spinning unit is composed of a pump or syringe, a high voltage current supplier, a metal plate collector and a spinneret. Optimization of the attained nano-fibers is undertaken through manipulation of the variables of the process and formulation, including concentration, viscosity, molecular mass, and physical phenomenon, as well as the environmental parameters including temperature and humidity. The nano-fibers achieved by electro-spinning can be utilized for drug loading. The mixing of two or more medicines can be performed via electro-spinning. Facilitation or inhibition of the burst release of a drug can be achieved by the use of the electro-spinning approach. This potential is anticipated to facilitate progression in applications of drug release modification and tissue engineering (TE). The present review aims to focus on electro-spinning, optimization parameters, pharmacological applications, biological characteristics, and in vivo analyses of the electro-spun nano-fibers. Furthermore, current developments and upcoming investigation directions are outlined for the advancement of electro-spun nano-fibers for TE. Moreover, the possible applications, complications and future developments of these nano-fibers are summarized in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...