Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(19): 8289-8297, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38660950

RESUMO

A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid-base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of -1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s-1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s-1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions.

2.
JACS Au ; 4(3): 1142-1154, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559734

RESUMO

Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).

3.
Chem Sci ; 15(11): 4095-4105, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487234

RESUMO

In this study, we prepared non-heme FeIII complexes (1, 2, and 3) of an N4 donor set of ligands (H2L, Me2L, and BPh2L). 1 is supported by a monoanionic bispyridine-dioxime ligand (HL). In 2 and 3, the primary coordination sphere of Fe remained similar to that in 1, except that the oxime protons of the ligand were replaced with two methyl groups and a bridging -BPh2 moiety, respectively. X-ray structures of the FeII complexes (1a and 3a) revealed similar Fe-N distances; however, they were slightly elongated in 2a. The FeIII/FeII potential of 1, 2, and 3 appeared at -0.31 V, -0.25 V, and 0.07 V vs. Fc+/Fc, respectively, implying that HL and Me2L have comparable donor properties. However, BPh2L is more electron deficient than HL or Me2L. 1 showed electrocatalytic oxygen reduction reaction (ORR) activity in acetonitrile in the presence of trifluoroacetic acid (TFAH) as the proton source at Ecat/2 = -0.45 V and revealed selective 4e-/4H+ reduction of O2 to H2O. 1 showed an effective overpotential (ηeff) of 0.98 V and turnover frequency (TOFmax) of 1.02 × 103 s-1. Kinetic studies revealed a kcat of 2.7 × 107 M-2 s-1. Strikingly, 2 and 3 remained inactive for electrocatalytic ORR, which established the essential role of the oxime scaffolds in the electrocatalytic ORR of 1. Furthermore, a chemical ORR of 1 has been investigated using decamethylferrocene as the electron source. For 1, a similar rate equation was noted to that of the electrocatalytic pathway. A kcat of 6.07 × 104 M-2 s-1 was found chemically. Complex 2, however, underwent a very slow chemical ORR. Complex 3 chemically enhances the 4e-/4H+ reduction of O2 and exhibits a TOF of 0.24 s-1 and a kcat value of 2.47 × 102 M-1 s-1. Based on the experimental observations, we demonstrate that the oxime backbone of the ligand in 1 works as a proton exchanging site in the 4e-/4H+ reduction of O2. The study describes how the ORR is affected by the tuning of the ligand scaffold in a family of non-heme Fe complexes.

4.
Inorg Chem ; 62(25): 9818-9826, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310343

RESUMO

Understanding the effect of the local electrical field around the reaction center in enzymes and molecular catalysis is an important topic of research. Herein, we explored the electrostatic field exerted by the alkaline earth metal ions (M2+ = Mg2+, Ca2+, Sr2+, and Ba2+) around Fe in FeIII(Cl) complexes by experimental and computational investigations. M2+ coordinated dinuclear FeIII(Cl) complexes (12M) were synthesized and characterized by X-ray crystallography and different spectroscopic techniques. EPR and magnetic moment measurements exhibited the presence of high-spin FeIII centers in the 12M complexes. Electrochemical investigations revealed FeIII/FeII reduction potential values shifted anodically in 12M complexes compared to 1. Likewise, 2p3/2 and 2p1/2 peaks in the XPS data were found to shift positively in the 12M complexes, demonstrating that redox-inactive metal ions make FeIII more electropositive. However, nearly similar λmax values in the UV-vis spectra were observed in 1 and 12M complexes. The first-principles-based computational simulations further revealed the impact of M2+ on stabilizing 3d-orbitals of Fe. The distortion in Laplacian distribution (∇2ρ(r)) of electron density around M2+ also indicates the possibility of having Fe-M interactions in these complexes. The absence of a bond critical point between FeIII and M2+ ions in the 12M complexes indicates dominant through-space interaction between these metal centers. Experimental and computational studies collectively imply that the installation of internal electrostatic fields exerted by M2+ ions in 12M complexes alters the electronic structure of FeIII.

5.
Inorg Chem ; 62(14): 5387-5399, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972560

RESUMO

The formation of Cu(III) species are often invoked as the key intermediate in Cu-catalyzed organic transformation reactions. In this study, we synthesized Cu(II) (1) and Cu(III) (3) complexes supported by a bisamidate-bisalkoxide ligand consisting of an ortho-phenylenediamine (o-PDA) scaffold and characterized them through an array of spectroscopic techniques, including UV-visible, electron paramagnetic resonance, X-ray crystallography, and 1H nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy. The Cu-N/O bond distances in 3 are ∼0.1 Šreduced compared to 1, implying a significant increase in 3's overall effective nuclear charge. Further, a Cu(III) complex (4) of a bisamidate-bisalkoxide ligand containing a trans-cyclohexane-1,2-diamine moiety exhibits nearly identical Cu-N/O bond distances to that of 3, inferring that the redox-active o-PDA backbone is not oxidized upon one-electron oxidation of the Cu(II) complex (1). In addition, a considerable difference in the 1s → 4p and 1s → 3d transition energy was observed in the X-ray absorption near-edge structure data of 3 vs 1, which is typical for the metal-centered oxidation process. Electrochemical measurements of the Cu(II) complex (1) in acetonitrile exhibited two consecutive redox couples at -0.9 and 0.4 V vs the Fc+/Fc reference electrode. One-electron oxidation reaction of 3 further resulted in the formation of a ligand-oxidized Cu complex (3a), which was characterized in depth. Reactivity studies of species 3 and 3a were explored toward the activation of the C-H/O-H bonds. A bond dissociation free energy (BDFE) value of ∼69 kcal/mol was estimated for the O-H bond of the Cu(II) complex formed upon transfer of hydrogen atom to 3. The study represents a thorough spectroscopic characterization of high-valent Cu complexes and sheds light on the PCET reactivity studies of Cu(III) complexes.

6.
Inorg Chem ; 61(51): 21035-21046, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36517453

RESUMO

Molecular cobalt(III) complexes of bis-amidate-bis-alkoxide ligands, (Me4N)[CoIII(L1)] (1) and (Me4N)[CoIII(L2)] (2), are synthesized and assessed through a range of characterization techniques. Electrocatalytic water oxidation activity of the Co complexes in a 0.1 M phosphate buffer solution revealed a ligand-centered 2e-/1H+ transfer event at 0.99 V followed by catalytic water oxidation (WO) at an onset overpotential of 450 mV. By contrast, 2 reveals a ligand-based oxidation event at 0.9 V and a WO onset overpotential of 430 mV. Constant potential electrolysis study and rinse test experiments confirm the homogeneous nature of the Co complexes during WO. The mechanistic investigation further shows a pH-dependent change in the reaction pathway. On the one hand, below pH 7.5, two consecutive ligand-based oxidation events result in the formation of a CoIII(L2-)(OH) species, which, followed by a proton-coupled electron transfer reaction, generates a CoIV(L2-)(O) species that undergoes water nucleophilic attack to form the O-O bond. On the other hand, at higher pH, two ligand-based oxidation processes merge together and result in the formation of a CoIII(L2-)(OH) complex, which reacts with OH- to yield the O-O bond. The ligand-coordinated reaction intermediates involved in the WO reaction are thoroughly studied through an array of spectroscopic techniques, including UV-vis absorption spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy. A mononuclear CoIII(OH) complex supported by the one-electron oxidized ligand, [CoIII(L3-)(OH)]-, a formal CoIV(OH) complex, has been characterized, and the compound was shown to participate in the hydroxide rebound reaction, which is a functional mimic of Compound II of Cytochrome P450.


Assuntos
Cobalto , Água , Cobalto/química , Modelos Moleculares , Ligantes , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
7.
Inorg Chem ; 61(36): 14252-14266, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041064

RESUMO

Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.


Assuntos
Níquel , Prótons , Cristalografia por Raios X , Elétrons , Íons , Cinética , Ligantes , Metais/química , Níquel/química , Oxirredução
8.
Inorg Chem ; 61(27): 10461-10476, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35759790

RESUMO

The isolation, characterization, and dioxygen reactivity of monomeric [(TPA)MII(mandelate)]+ (M = Fe, 1; Co, 3) and dimeric [(BPMEN)2MII2(µ-mandelate)2]2+ (M = Fe, 2; Co, 4) (TPA = tris(2-pyridylmethyl)amine and BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridin-2-yl-methyl)ethane-1,2-diamine) complexes are reported. The iron(II)- and cobalt(II)-mandelate complexes react with dioxygen to afford benzaldehyde and benzoic acid in a 1:1 ratio. In the reactions, one oxygen atom from dioxygen is incorporated into benzoic acid, but benzaldehyde does not derive any oxygen atom from dioxygen. While no O2-derived intermediate is observed with the iron(II)-mandelate complexes, the analogous cobalt(II) complexes react with dioxygen at a low temperature (-80 °C) to generate the corresponding cobalt(III)-superoxo species (S), a key intermediate implicated in the initiation of mandelate decarboxylation. At -20 °C, the cobalt(II)-mandelate complexes bind dioxygen reversibly leading to the formation of µ-1,2-peroxo-dicobalt(III)-mandelate species (P). The geometric and electronic structures of the O2-derived intermediates (S and P) have been established by computational studies. The intermediates S and P upon treatment with a protic acid undergo decarboxylation to afford benzaldehyde (50%) with a concomitant formation of the corresponding µ-1,2-peroxo-µ-mandelate-dicobalt(III) (P1) species. The crystal structure of a peroxide species isolated from the cobalt(II)-carboxylate complex [(TPA)CoII(MPA)]+ (5) (MPA = 2-methoxyphenylacetate) supports the composition of P1. The observations of the dioxygen-derived intermediates from cobalt complexes and their electronic structure analyses not only provide information about the nature of active species involved in the decarboxylation of mandelate but also shed light on the mechanistic pathway of two-electron versus four-electron reduction of dioxygen.


Assuntos
Ferro , Oxigênio , Benzaldeídos , Ácido Benzoico , Cobalto , Descarboxilação , Compostos Ferrosos/química , Ferro/química , Ligantes , Oxigênio/química
9.
Inorg Chem ; 61(7): 3152-3165, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119860

RESUMO

Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.

10.
Inorg Chem ; 60(23): 18006-18016, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34813300

RESUMO

A mononuclear manganese(V) oxo complex of a bis(amidate)bis(alkoxide) ligand, (NMe4)[MnV(HMPAB)(O)] [2; H4HMPAB = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene], was synthesized and structurally characterized. A Mn-Oterm distance of 1.566(4) Å was observed in the solid-state structure of 2, consistent with the Mn≡O formulation. The reaction of redox-inactive metal ions (Mn+ = Li+, Ca2+, Mg2+, Y3+, and Sc3+) with 2 resulted in the formation of 2-Mn+ species, which were characterized by UV-vis, 1H NMR, cyclic voltammetry, and in situ IR spectroscopy. Theoretical calculations suggested that the alkoxide oxygen atoms of the ligand scaffold are energetically most favorable for coordinating the Mn+ ions in 2. Complex 2 revealed one-electron-reduction potential at -0.01 V versus ferrocenium/ferrocene, which shifted anodically upon coordination of Mn+ ions to 2, and such a shift became more prominent with stronger Lewis acids. The oxygen-atom transfer (OAT) reactivities of 2 and 2-Mn+ species with triphenylphosphine were compared, which exhibited a systematic increase of the reaction rate with increasing Lewis acidity of Mn+ ions, and a plot of log k2 versus Lewis acidity of Mn+ ions (ΔE) followed a linear relationship. It was observed that 2-Sc3+ was ca. 3200 times more reactive toward the OAT reaction compared to 2. Hammett analysis of 2 exhibited a V-shaped plot, indicating a change of the reaction mechanism upon going from electron-rich to electron-deficient Ar3P substrates. In contrast, 2-Ca2+ and 2-Sc3+ showed an electrophilic nature toward the OAT reaction, thus demonstrating the role of the Lewis acid in controlling the OAT mechanism. The hydrogen-atom abstraction reaction of 2 and 2-Mn+ adducts with 1-benzyl-1,4-dihydronicotinamide was investigated, and it was observed that the rate of reaction did not vary considerably with the Lewis acidity of Mn+ ions. On the basis of Eyring analysis of 2 and 2-Mn+ adducts, we hypothesized an entropy-controlled hydrogen-atom-transfer reaction for 2-Sc3+, which is different from the reaction mechanism of 2 and 2-Ca2+.

11.
Chem Sci ; 12(12): 4418-4424, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34163706

RESUMO

A terminal FeIIIOH complex, [FeIII(L)(OH)]2- (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at -45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)]- (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pK a value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2.

12.
Chemistry ; 25(47): 11157-11165, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31199532

RESUMO

A tetrahedral CuII alkylperoxido complex [CuII (TMG3 tach)(OOCm)]+ (1OOCm ) (TMG3 tach={2,2',2''-[(1s,3s,5s)-cyclohexane-1,3,5-triyl]tris-(1,1,3,3-tetramethyl guanidine)}, OOCm=cumyl peroxide) is prepared and characterized by UV/Vis, cold-spray ionization mass spectroscopy (CSI-MS), resonance Raman, and EPR spectroscopic methods. Product analysis of the self-decomposition reaction of 1OOCm in acetonitrile (MeCN) indicates that the reaction involves O-O bond homolytic cleavage of the peroxide moiety with concomitant C-H bond activation of the solvent molecule. When an external substrate such as 1,4-cyclohexadiene (CHD) is added, the O-O bond homolysis leads to C-H activation of the substrate. Furthermore, the reaction of 1OOCm with 2,6-di-tert-butylphenol derivatives produces the corresponding phenoxyl radical species (ArO. ) together with a CuI complex through a concerted proton-electron transfer (CPET) mechanism. Details of the reaction mechanisms are explored by DFT calculations.

13.
Inorg Chem ; 56(16): 9634-9645, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28753281

RESUMO

A new tridentate N3 ligand (TMG3tach) consisting of cis,cis-1,3,5-triaminocyclohexane (tach) and three N,N,N',N'-tetramethylguanidino (TMG) groups has been developed to prepare copper complexes with a tetrahedral geometry and a labile coordination site. Treatment of the ligand with CuIIX2 (X = Cl and Br) gave copper(II)-halide complexes, [CuII(TMG3tach)Cl]+ (2Cl) and [CuII(TMG3tach)Br]+ (2Br), the structures of which have been determined by X-ray crystallographic analysis. The complexes exhibit a four-coordinate structure with C3v symmetry, where the labile halide ligand (X) occupies a position on the trigonal axis. 2Br was converted to a methoxido-copper(II) complex [CuII(TMG3tach)(OMe)](OTf) (2OMe), also having a similar four-coordinate geometry, by treating it with an equimolar amount of tetrabutylammonium hydroxide in methanol. The methoxido-complex 2OMe was further converted to the corresponding phenolato-copper(II) (2OAr) and thiophenolato-copper(II) (2SAr) complexes by ligand exchange reactions with the neutral phenol and thiophenol derivatives, respectively. The electronic structures of the copper(II) complexes with different axial ligands are discussed on the basis of EPR spectroscopy and DFT calculations.

14.
Dalton Trans ; 46(25): 8013-8016, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28617501

RESUMO

A stable nickel(ii)-aminoxyl radical complex was generated by the reaction of a nickel(ii) complex supported by a tren ligand (tris(2-aminoethyl)amine) having bulky m-terphenyl substituents (TIPT: 3,5-bis(2,6-diisopropylphenyl)phenyl) and m-CPBA (m-chloroperoxybenzoic acid). The formation mechanism of the nickel(ii)-aminoxyl radical complex was examined.

15.
Inorg Chem ; 56(1): 359-371, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977171

RESUMO

A series of iron(II) benzilate complexes (1-7) with general formula [(L)FeII(benzilate)]+ have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA in 2), N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N1,N1-dimethyl-N2,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me2-iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N1,N2-dimethyl-N1,N2-bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N1,N2-dimethyl-N1,N2-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me2-BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O2-derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me3-TPA, 6-Me2-iso-BPMEN, BPMEN, and 6-Me2-BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands.

16.
Inorg Chem ; 54(22): 10576-86, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26536067

RESUMO

2,4'-Dihydroxyacetophenone dioxygenase (DAD) is a bacterial non-heme enzyme that carries out oxygenative aliphatic C-C bond cleavage of 2,4'-dihydroxyacetophenone (an α-hydroxy ketone) with the incorporation of both the oxygen atoms of dioxygen into the cleavage products. The crystal structure of the iron enzyme DAD has recently been determined, but very little is known about the mechanism of the C-C bond cleavage reaction. With the objective of gaining insights into the mechanism of the reaction catalyzed by DAD, six new biomimetic iron(II)-α-hydroxy ketone complexes, [(Tp(Ph2))Fe(II)(PHAP)] (1), [(Tp(Ph2))Fe(II)(HCH)] (2), [(Tp(Ph2))Fe(II)(HBME)] (3), [(Tp(Ph2))Fe(II)(CHPE)] (4), [(6-Me3-TPA)Fe(II)(PHAP)](+) (5), and [(6-Me3-TPA)Fe(II)(HCH)](+) (6) (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate, 6-Me3-TPA = tris(6-methyl-2-pyridylmethyl)amine, PHAP-H = 2-phenyl-2-hydroxyacetophenone, HCH-H = 2-hydroxycyclohexanone, HBME-H = 2-hydroxy-1,2-bis(4-methoxyphenyl)ethanone, and CHPE-H = 1-(4-chlorophenyl)-2-hydroxy-2-phenylethanone), have been isolated and characterized. The single-crystal X-ray structure of 2 shows a five-coordinate iron(II) complex with one tridentate facial ligand and a monoanionic bidentate α-hydroxy ketone, resulting in a distorted-square-pyramidal coordination geometry at the iron center. The iron(II) complexes react with dioxygen to oxidatively cleave the aliphatic C-C bonds of the coordinated α-hydroxy ketones to afford 2 equiv of carboxylic acids. Mechanistic studies reveal that the C-C bond cleavage reaction proceeds through an intradiol pathway. Additionally, the coordinated α-hydroxy ketones in all of the complexes, except in complex 4, undergo two-electron oxidation to form the corresponding 1,2-diketones. However, the yields of 1,2-diketones are higher with the iron complexes of the tripodal N4 ligand (6-Me3-TPA) in comparison to the facial N3 ligand (Tp(Ph2)). These results strongly support the natural selection of a facial N3 environment at the active site of the iron enzyme DAD.


Assuntos
Complexos de Coordenação/química , Dioxigenases/química , Compostos Ferrosos/química , Cetonas/química , Biomimética , Ligantes , Modelos Químicos , Oxirredução , Oxigênio/química , Radioisótopos de Oxigênio
17.
J Am Chem Soc ; 137(34): 10870-3, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26291639

RESUMO

The reaction of [Cu(I)(TIPT3tren) (CH3CN)]ClO4 (1) and cumene hydroperoxide (C6H5C(CH3)2OOH, ROOH) at -60 °C in CH2Cl2 gave a Cu(II)-alkylperoxide/anilino radical complex 2, the formation of which was confirmed by UV-vis, resonance Raman, EPR, and CSI-mass spectroscopy. The mechanism of formation of 2, as well as its reactivity, has been explored.


Assuntos
Compostos de Anilina/química , Cobre/química , Compostos Organometálicos/química , Peróxidos/química , Radicais Livres/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
18.
Inorg Chem ; 53(6): 2810-21, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24627956

RESUMO

Three biomimetic iron(II) α-hydroxy acid complexes, [(Tp(Ph2))Fe(II)(mandelate)(H2O)] (1), [(Tp(Ph2))Fe(II)(benzilate)] (2), and [(Tp(Ph2))Fe(II)(HMP)] (3), together with two iron(II) α-methoxy acid complexes, [(Tp(Ph2))Fe(II)(MPA)] (4) and [(Tp(Ph2))Fe(II)(MMP)] (5) (where HMP = 2-hydroxy-2-methylpropanoate, MPA = 2-methoxy-2-phenylacetate, and MMP = 2-methoxy-2-methylpropanoate), of a facial tridentate ligand Tp(Ph2) [where Tp(Ph2) = hydrotris(3,5-diphenylpyrazole-1-yl)borate] were isolated and characterized to study the mechanism of dioxygen activation at the iron(II) centers. Single-crystal X-ray structural analyses of 1, 2, and 5 were performed to assess the binding mode of an α-hydroxy/methoxy acid anion to the iron(II) center. While the iron(II) α-methoxy acid complexes are unreactive toward dioxygen, the iron(II) α-hydroxy acid complexes undergo oxidative decarboxylation, implying the importance of the hydroxyl group in the activation of dioxygen. In the reaction with dioxygen, the iron(II) α-hydroxy acid complexes form iron(III) phenolate complexes of a modified ligand (Tp(Ph2)*), where the ortho position of one of the phenyl rings of Tp(Ph2) gets hydroxylated. The iron(II) mandelate complex (1), upon decarboxylation of mandelate, affords a mixture of benzaldehyde (67%), benzoic acid (20%), and benzyl alcohol (10%). On the other hand, complexes 2 and 3 react with dioxygen to form benzophenone and acetone, respectively. The intramolecular ligand hydroxylation gets inhibited in the presence of external intercepting agents. Reactions of 1 and 2 with dioxygen in the presence of an excess amount of alkenes result in the formation of the corresponding cis-diols in good yield. The incorporation of both oxygen atoms of dioxygen into the diol products is confirmed by (18)O-labeling studies. On the basis of reactivity and mechanistic studies, the generation of a nucleophilic iron-oxygen intermediate upon decarboxylation of the coordinated α-hydroxy acids is proposed as the active oxidant. The novel iron-oxygen intermediate oxidizes various substrates like sulfide, fluorene, toluene, ethylbenzene, and benzaldehyde. The oxidant oxidizes benzaldehyde to benzoic acid and also participates in the Cannizzaro reaction.


Assuntos
Compostos Ferrosos/química , Hidroxiácidos/química , Ferro/química , Oxidantes/química , Oxigênio/química , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
19.
Chemistry ; 18(37): 11778-87, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22847897

RESUMO

An iron(III)-catecholate complex [L(1)Fe(III)(DBC)] (2) and an iron(II)-o-aminophenolate complex [L(1)Fe(II)(HAP)] (3; where L(1) = tris(2-pyridylthio)methanido anion, DBC = dianionic 3,5-di-tert-butylcatecholate, and HAP = monoanionic 4,6-di-tert-butyl-2-aminophenolate) have been synthesised from an iron(II)-acetonitrile complex [L(1)Fe(II)(CH(3)CN)(2)](ClO(4)) (1). Complex 2 reacts with dioxygen to oxidatively cleave the aromatic C-C bond of DBC giving rise to selective extradiol cleavage products. Controlled chemical or electrochemical oxidation of 2, on the other hand, forms an iron(III)-semiquinone radical complex [L(1)Fe(III)(SQ)](PF(6)) (2(ox)-PF(6); SQ = 3,5-di-tert-butylsemiquinonate). The iron(II)-o-aminophenolate complex (3) reacts with dioxygen to afford an iron(III)-o-iminosemiquinonato radical complex [L(1)Fe(III)(ISQ)](ClO(4))(3(ox)-ClO(4); ISQ = 4,6-di-tert-butyl-o-iminobenzosemiquinonato radical) via an iron(III)-o-amidophenolate intermediate species. Structural characterisations of 1, 2, 2(ox) and 3(ox) reveal the presence of a strong iron-carbon bonding interaction in all the complexes. The bond parameters of 2(ox) and 3(ox) clearly establish the radical nature of catecholate- and o-aminophenolate-derived ligand, respectively. The effect of iron-carbon bonding interaction on the dioxygen reactivity of biomimetic iron-catecholate and iron-o-aminophenolate complexes is discussed.


Assuntos
Catecóis/química , Compostos Férricos/química , Compostos Ferrosos/química , Oxigênio/química , Piridinas/química , Aminofenóis/química , Benzoquinonas/síntese química , Benzoquinonas/química , Biomimética , Ligantes , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...