Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 14(2): 021004, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947504

RESUMO

Effective use of medical device implants is often hindered by infection, which may cause the device to be rejected from the body and seriously endanger health. Such infections are often a result of biofilm formation or microbial colonies collecting on a surface. Therefore, a challenge in the medical field is to mitigate the impact of biofilm formation in order to save thousands of lives and millions of healthcare dollars annually. The proposed strategy is to target the attachment phase of the biofilm lifecycle to try to prevent the formation of antimicrobial resistant biofilms. Prevention of bacterial attachment may be induced through the introduction of nitric oxide (NO), a small biological signaling molecule known for its antibacterial properties. NO may be delivered via release from a donating molecule incorporated in the polymer composing the medical device. The NO donor S-nitrosoglutathione (GSNO) was utilized in this study because it is a relatively stable small molecule that naturally exists in the body, therefore negating possible adverse reactions when it is introduced to the body. Tygon®, a polymer commonly found in Food and Drug Administration approved medical devices such as catheters, was utilized as a platform for the inhibition of biofilms. To study the necessary amount of released NO needed to cause a reduction in attachment across varying strains, different concentrations of GSNO were applied. Two Gram-negative (Pseudomonas aeruginosa and Acinetobacter baumannii) and two Gram-positive species (Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus), all strong biofilm formers listed as urgent threats by the Center for Disease Control, illustrated different responses to NO. Gram-positive species showed a decrease in viability over 80% with an average total NO release of 2.01 ± 2.11 × 10 - 4 µmols, while Gram-negative response was less, with viability decreasing to 38% (P. aeruginosa) and 71% (A. baumannii) with 1.25 ± 1.63 × 10-4 µmols NO. Further studies utilizing glutathione surface roughness controls highlight that increasing the surface roughness of the polymer platform produces no statistically significant difference in viability compared to the Tygon-only negative control in all strains except P. aeruginosa. Developing a quantitative understanding of how NO release and platform surface roughness impact biofilm attachment across Gram strains is key to reducing the incidence and impact of medical device associated infections.


Assuntos
Antibacterianos/toxicidade , Biofilmes/efeitos dos fármacos , Microbiologia Ambiental , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido Nítrico/toxicidade , Propriedades de Superfície , Biofilmes/crescimento & desenvolvimento , Equipamentos e Provisões/microbiologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , S-Nitrosoglutationa/toxicidade
2.
Biointerphases ; 11(3): 031005, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27440395

RESUMO

Tygon(®) and other poly(vinyl chloride)-derived polymers are frequently used for tubing in blood transfusions, hemodialysis, and other extracorporeal circuit applications. These materials, however, tend to promote bacterial proliferation which contributes to the high risk of infection associated with device use. Antibacterial agents, such as nitric oxide donors, can be incorporated into these materials to eliminate bacteria before they can proliferate. The release of the antimicrobial agent from the device, however, is challenging to control and sustain on timescales relevant to blood transport procedures. Surface modification techniques can be employed to address challenges with controlled drug release. Here, surface modification using H2O (v) plasma is explored as a potential method to improve the biocompatibility of biomedical polymers, namely, to tune the nitric oxide-releasing capabilities from Tygon films. Film properties are evaluated pre- and post-treatment by contact angle goniometry, x-ray photoelectron spectroscopy, and optical profilometry. H2O (v) plasma treatment significantly enhances the wettability of the nitric-oxide releasing films, doubles film oxygen content, and maintains surface roughness. Using the kill rate method, the authors determine both treated and untreated films cause an 8 log reduction in the population of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Notably, however, H2O (v) plasma treatment delays the kill rate of treated films by 24 h, yet antibacterial efficacy is not diminished. Results of nitric oxide release, measured via chemiluminescent detection, are also reported and correlated to the observed kill rate behavior. Overall, the observed delay in biocidal agent release caused by our treatment indicates that plasma surface modification is an important route toward achieving controlled drug release from polymeric biomedical devices.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/farmacocinética , Escherichia coli/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/farmacocinética , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Plasma/microbiologia , Staphylococcus aureus/fisiologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...