Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958650

RESUMO

MXene has attracted considerable attention for supercapacitor applications in the past decade owing to its exceptional electrochemical properties. Although major research interests are focused on composite-based MXene, doping engineering of MXene has recently emerged as a promising alternative. This work unveils the potential of doped MXene for supercapacitor applications with a critical perspective. Various doping engineering strategies and synthesis methods adopted are explicitly delineated. Detailed discussions on the optimization of lattice, functionalization, substitution, and interface modification are provided. Further, it sheds light on recent developments with the asssociated mechanism of doped MXene supercapacitors, followed by the associated challenges. Finally, a roadmap for further progress of doped MXene for the realization of advanced and high-performing energy storage systems has been described. We envision that this Perspective will open up new avenues for the further exploration of this domain.

2.
RSC Adv ; 14(28): 20312-20327, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38919280

RESUMO

The fabrication of p-n heterostructures was found to be an effective strategy to stimulate the interfacial exciton shipment and photocatalytic reactions. Herein, we report a p-n junction synthesized by combining p-type boron-doped reduced graphene oxide (B-rGO) with an n-type ZnFe2O4 semiconducting material for Cr(vi) reduction under LED light irradiation. The band structures of ZnFe2O4 and B-rGO were evaluated using UV-vis spectroscopy, Mott-Schottky (M-S) plots and photocurrent studies. The results indicated that ZnFe2O4 and B-rGO exhibit a conventional type-II charge transfer, and the Fermi-level (E F) of ZnFe2O4 was found to be much lower than that of the B-rGO material. Based on these investigations, an S-scheme charge-migration pathway was suggested and demonstrated by the photocatalytic activity and nitroblue tetrazolium (NBT) chloride experiments. The optimal 2 wt% B-rGO/ZnFe2O4 heterojunction exhibits the highest photocatalytic performance, i.e. 84% of Cr(vi) reduction in 90 min under 20 W LED light irradiation with a rate constant of 0.0207 min-1, which was 4.6- and 2.15-fold greater than that of ZnFe2O4 (ZnF) and B-rGO, respectively. The intimate interfacial contact, excellent photon-harvesting properties, effective exciton segregation and availability of active electrons are some factors responsible for enhanced photocatalytic Cr(vi) reduction. In order to fulfill the demand of applied waste-water management, the influences of various photocatalyst amounts, pH values and co-exiting ions on photocatalytic activities were evaluated. Finally, this work provides a way to fabricate S-scheme-based p-n-heterostructures for photocatalytic wastewater treatment.

3.
Chemistry ; : e202400496, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864360

RESUMO

The prodigious employment of fossil fuels to conquer the global energy demand is becoming a dreadful threat to the human society. This predicament is appealing for a potent photocatalyst that can generate alternate energy sources via solar to chemical energy conversion. With this interest, we have fabricated a ternary heterostructure of Ti3C2 nanosheet modified g-C3N4/Bi2O3 (MCNRBO) Z-scheme photocatalyst through self-assembly process. The morphological analysis clearly evidenced the close interfacial interaction between g-C3N4 nanorod, Bi2O3 and Ti3C2 nanosheets. The oxygen vacancy created on Bi2O3 surface, as suggested by XPS and EPR analysis, supported the Z-scheme heterojunction formation between g-C3N4 nanorod and Bi2O3 nanosheets. The collaborative effect of Z-scheme and Schottky junction significantly reduced charge transfer resistance promoting separation efficiency of excitons as indicated from PL and EIS analysis. The potential of MCNRBO towards photocatalytic application was investigated by H2O2 and H2 evolution reaction. A superior photocatalytic H2O2 and H2 production rate for MCNRBO is observed, which are respectively around 5 and 18 folds higher as compared to pristine CNR nanorod. The present work encourages for the development of a noble, eco-benign and immensely efficient dual heterojunction based photocatalyst, which can acts as saviour of human society from energy crisis.

4.
Langmuir ; 40(8): 4514-4530, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350006

RESUMO

Photocatalytic hydrogen production and pollutant degradation using a heterogeneous photocatalyst remains an alternative route for mitigating the impending pollution and energy crisis. Hence, the development of cost-effective and environmentally friendly semiconducting materials with high solar light captivation nature is imperative. To overcome this challenge, α-MnO2 nanorod (NR)-modified MOF UiO-66-NH2 (UNH) was prepared via a facile solvothermal method, which is efficient toward H2 evolution and oxy-tetracycline hydrochloride (O-TCH) degradation. The field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) results of the α-MnO2@UNH (MnU) hybrid reveals its nanorod embedded in MOF matrix, and the X-ray photoelectron spectroscopy (XPS) result confirms the interaction of UNH moiety with α-MnO2 NRs. Additionally, the outstanding separation of photogenerated excitons and the charge-transfer efficacy are further validated by photoluminescence (PL), time-resolved photoluminescence (TRPL), electrochemical impedance spectroscopy (EIS), and transient photocurrent analysis, which are the key causes for photoactivity augmentation in the MnU composites. The MnU-2 composite shows a superior O-TCH degradation efficiency of 93.23% and an excellent H2 production rate of about 410.6 µmol h-1 upon light irradiation. This study provides significant evidence in favor of the suggested mediator-free S-scheme-adapted charge migration path, and it effectively explains the enhanced exciton separation leading to extraordinary catalytic efficiency of the proposed composite.

5.
Nanoscale Adv ; 6(3): 934-946, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298579

RESUMO

In the realm of composite photocatalysts, the fusion of the co-catalyst effect with interfacial engineering is recognized as a potent strategy for facilitating the segregation and migration of photo-induced charge carriers. Herein, an innovative mediator-based Z-scheme hybrid, i.e. MIS@1T/2H-MoS2, has been well designed by pairing MIS with 1T/2H-MoS2via a facile hydrothermal strategy as a competent photocatalyst for H2O2 and H2 generation. The co-catalyst, i.e. metallic 1T-phase bridging between semiconducting 2H-MoS2 and MIS, serves as a solid state electron mediator in the heterostructure. Morphological findings revealed the growth of 1T/2H-MoS2 nanoflowers over MIS microflowers, verifying the close interaction between MIS and 1T/2H-MoS2. By virtue of accelerated e-/h+ pair separation and migration efficiency along with a proliferated density of active sites, the MMoS2-30 photocatalyst yields an optimum H2O2 of 35 µmol h-1 and H2 of 370 µmol h-1 (ACE of 5.9%), which is 3 and 2.7 fold higher than pristine MIS. This obvious enhancement can be attributed to photoluminescence and electrochemical aspects that substantiate the diminished charge transfer resistance along with improved charge carrier separation, representing a good example of a noble metal-free photocatalyst. The proposed Z-scheme charge transfer mechanism is aided by time-resolved photoluminescence (TRPL), XPS, radical trapping experiments, and EPR analysis. Overall, this endeavour provides advanced insights into the architecture of noble metal-free Z-scheme heterostructures, offering promising prospects in photocatalytic applications.

6.
RSC Adv ; 14(1): 233-244, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173613

RESUMO

The formation of heterostructures by combining individual components (NiO and Co3O4) is a preferred approach to enhance electrochemical performance as it leads to improved charge transfer and surface reaction kinetics. In the present work, a NiO/Co3O4 composite was prepared by two methods. First, neat NiO and Co3O4 were prepared by adopting the hydrothermal method followed by the formation of the composite (i) by a hydrothermal route (NC-Hydro) and (ii) by a calcination route (NC-Cal). NC-Hydro composite shows a specific capacity of 176 C g-1 at 1 A g-1 of current density in the three-electrode system in a 2 M KOH solution as an electrolyte with 90% cyclic retention after 5000 cycles at 4 A g-1. NC-Cal shows a specific capacity of 111 C g-1 at 1 A g-1 with 75% cyclic retention. The coulombic efficiency of NC-Hydro was 86.3% while for NC-Cal it was 42.3%. The reason behind the superior electrochemical performance of NC-Hydro in comparison to NC-Cal may be the large interlayer spacing and lattice parameters of the former, which provide large space for redox reactions. The unit cell volume of the composites was more than that of the constituents. This study reveals that the composites prepared by the hydrothermal method have superior electrochemical properties in comparison to composites prepared by the calcination method.

7.
Inorg Chem ; 63(4): 1919-1937, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38207280

RESUMO

The utilization of multivalence ionic metal species generated through a peroxymonosulfate (PMS)-assisted photocatalytic system is a promising platform for the selective degradation of water contaminants. However, achieving an effective electron transport and enhanced separation efficiency for these metal species is a daunting challenge. Thus, our current study addresses this challenge by using a Co-Fe-based layered-double-hydroxide template to synthesize a Co3O4/FeCo2O4 p-n heterojunction composite via a simple monosynthetic route. The resultant composite is thoroughly validated through advanced characterization techniques that efficiently activate PMS for sulfadiazine (SDZ) degradation under visible light, achieving a remarkable degradation efficiency of up to 90%. This accomplishment is attributed to factors including intimate interfacial contact, excellent light harvesting, mesoporosity, and oxygen vacancies within the composite. The formation of a distinct p-n heterojunction following the S-scheme charge dynamic significantly enhances photogenerated carrier separation and reduces charge recombination. The research delves into comprehensive investigations including degradation studies, active species trapping experiments, parameter exploration, and in-depth liquid chromatography-mass spectrometry for analysis of the degradation byproducts and pathway. Induced oxygen vacancies, strategically placed active surface sites, and mesoporosity in the Co3O4/FeCo2O4 composite synergistically boosted the sluggish PMS activation, leading to enhanced SDZ degradation. This study introduces a new perspective by demonstrating the potential of a single-material, mixed-metal oxide-based p-n heterojunction photocatalytic system following the S-scheme charge-transfer route for SDZ degradation. The findings contribute toward emphasizing the importance of tailored composite materials in tackling persistent contaminants.

8.
Inorg Chem ; 63(1): 256-271, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112438

RESUMO

Prompt recombination of photoproduced charges in bulk and surface of a photocatalyst significantly impedes catalytic efficiency. To address these challenges, FeOOH nanorods (NRs) anchored NaNbO3 (NNO) piezoelectric microcubes (MCs) have been fabricated for ciprofloxacin (CIP) degradation and oxygen evolution through water splitting by coupling macroscopic spontaneous piezoelectric polarization and a built-in electric field. The local electric field induced by surface oxygen vacancies (Ovs) and orientation of FeOOH NRs over NNO MCs afford the polarization electric field a significant boost, driving the quick separation/migration of charge carriers from bulk to the surface. The polarized NNO/FeOOH composite with ample Ovs demonstrates an outstanding piezophotocatalytic CIP degradation of 93% in 1 h, higher than pristine materials (NNO and FeOOH), and a high O2 evolution rate of 1155 µmol h-1. The effect of piezoelectric polarization on the catalytic activity is supplemented by theoretical simulations. This work offers an avenue for selective pollutant remediation and water splitting through the rational design of piezoelectric polarization-mediated heterostructure systems with surface Ovs.


Assuntos
Ciprofloxacina , Oxigênio , Catálise , Água , Modelos Teóricos , Preparações Farmacêuticas
9.
Dalton Trans ; 52(44): 16525-16537, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37878009

RESUMO

With the exceptional advantages of safety, greenness, and low cost, photocatalytic H2O2 generation has kindled a wonderful spark, although being severely hampered by the terrible photoinduced exciton recombination, migration, and surface decomposition. Here, employing reflux method, the Cd-Mo-Se quantum dots of varying molar ratios of Cd and Mo were synthesized using thioglycolic acid as the capping ligand to regulate their growth. This type of metal alloying promotes rapid charge migration, improves light harvesting, and reduces the rate of charge recombination. The improved optoelectronic properties and boosted activity of Cd-rich ternary CMSe-1 QDs led to the observed exceptional photocatalytic H2O2 yield of 1403.5 µmol g-1 h-1 (solar to chemical conversion efficiency, 0.27%) under visible light, outperforming the other ternary and Se-based QD photocatalysts. Additionally, CMSe-1 shows 93.6% (2 h) hazardous Cr(VI) photoreduction. The enhanced catalytic performance of CMSe-1 corresponds to effective charge carrier separation and transfer efficiency, well supported by PL, TRPL, and electrochemical measurements. Photocatalytic H2O2 production was also studied under varying experimental conditions and the scavenger test suggests a superoxide radical intermediate 2-step single electron reduction pathway. The catalyst-assisted Cr(VI) reduction is substantiated by the zero-order kinetics as well as the determination of the pHPZC value. The catalyst can be employed for a maximum of four times while retaining its activity, according to the photostability and reusability test outcomes. This research presents interesting approaches for producing ternary QDs and modified systems for efficient photocatalytic H2O2 production and Cr(VI) reduction.

10.
Nanoscale Adv ; 5(17): 4521-4535, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638166

RESUMO

Although extensive research has been performed on metal oxide-based supercapacitors during recent years, they remain lacking in their intrinsic conductivity and stability. To resolve this, 1D/2D heterostructure materials are being utilized, which significantly improves the performance and stability of both materials while employing their synergistic advantage consisting of morphologically tuned surfaces and superior electroactive sites. However, the performance remains unsatisfactory due to the sluggish faradaic reaction at the electrode/electrolyte interface. To address this challenge, we combined the synergistic advantage of morphological nanoengineering and the fast reaction kinetics of redox mediators, thus anticipating superior energy storage performance. A novel 1D/2D heterostructure of ZnCo2O4 (ZCO) and GaN was designed and implemented for the first time, and it demonstrated an excellent specific capacitance of 1693 F g-1 in the mixed electrolyte of KOH and K4[Fe(CN)6]. The all-solid-state flexible hybrid supercapacitor delivered an energy density of 92.63 W h kg-1 at a power density of 1287.52 W kg-1, with superb stability and mechanical endurance that outperformed previously reported ZCO-based materials. Additionally, we delineated the underlying mechanism governing the utilization of redox mediators along with morphological nanoengineering, which will facilitate the current development of state-of-the-art energy storage systems.

11.
Langmuir ; 39(21): 7294-7306, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184616

RESUMO

Hydrogen and oxygen evolution via photocatalytic water splitting remains the quintessential alternative to fossil fuels. Photocatalysts must be sufficiently robust, competent, and productive toward harnessing sunlight in order to utilize the solar spectrum for maximal photocatalytic output. Herein, we have fabricated the MgIn2S4/UiO-66-NH2 composite via a facile solvothermal route and have determined its efficacy toward light-induced H2 and O2 generation reactions through water splitting with the aid of different sacrificial agents. Initially, the formation of pristine and composite materials was ascertained by PXRD, FTIR, etc. Moreover, with the aid of sophisticated morphological characterization techniques (FESEM and HRTEM), the intricate interaction between MgIn2S4 and UiO-66-NH2 was revealed. Additionally, the XPS studies suggested the effective interaction between the individual components with binding energy shifting suggesting the transfer of electrons from Zr-MOF to MgIn2S4. The PL and electrochemical aspects supported the effective photogenerated charge segregation in the prepared composite leading to superior photocatalytic outputs. Amidst the prepared composites of (3, 5, and 7 wt %) MgIn2S4/UiO-66-NH2, the 5 wt % or UM-2 composite displays optimal H2 and O2 evolution performances of 493.8 and 258.6 µmol h-1 (4-fold greater than for pristine MgIn2S4 and UiO-66-NH2), respectively. The nanocomposite's enhanced performance is indeed a consequence of the coadjuvant interaction among pristine UiO-66-NH2 and MgIn2S4 components that transpires via the Z-scheme-mediated charge transfer by enabling facile exciton segregation and channelization. Moreover, the composite inherited the remarkable framework stability of parent Zr-MOF, and the MgIn2S4 insertion had a negligible impact on the framework integrity. This work will offer a valuable model for developing robust Zr-MOF-based nanocomposite photocatalysts and evaluating their superior performance toward photocatalytic water redox reactions.

12.
Inorg Chem ; 62(19): 7584-7597, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126844

RESUMO

Designing of a visible-light-driven semiconductor-based heterojunction with suitable band alignment and well-defined interfacial contact is considered to be an effective strategy for the transformation of solar-to-chemical energy and environmental remediation. In this context, MXenes have received tremendous attention in the research community due to their merits of abundant derivatives, elemental composition, excellent metallic conductivity, and surface termination groups. Meanwhile, a facile synthetic strategy for MXene-derived TiO2 nanocomposites with stable framework and higher photocatalytic activity under visible-light irradiation still remains a challenge for researchers. Herein, we report a novel synthetic strategy of preparing a two-dimensional Ti3C2@TiO2 nanohybrid by a facile reflux method under acidic conditions. In this oxidation reaction, protonation of the hydroxyl terminal group of MXene creates Ti more electrophilic and susceptible to an oxidative nucleophilic addition reaction with the presence of both water and oxygen. The physicochemical properties of the nanohybrid Ti3C2@TiO2 were verified by varieties of characterization techniques. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analysis specifically elucidated the intimate interfacial interaction between Ti3C2 and TiO2. The optimized Ti3C2@TiO2-48 h photocatalyst exhibited the highest tetracycline hydrochloride (TCH, 90% in 90 min) degradation efficiency in comparison to pristine TiO2 with a rate constant (k) of 0.02463 min-1. The major contribution of •O2- and •OH radicals throughout photocatalytic TCH degradation was confirmed by the trapping experiment. Moreover, the photocatalyst showed the highest hydrogen generation rate of 140.8 µmol h-1 along with an apparent conversion efficiency of 2.2%. The excellent photocatalytic activity of Ti3C2@TiO2 originated from the superior electrical conductivity of cocatalyst Ti3C2, which facilitated spatial photogenerated e-/h+ separation and transfer at the Ti3C2 MXene@TiO2 interface. Overall, this research work will describe a promising protocol of designing MXene-derived photocatalysts toward efficient environmental remediation and wastewater treatment applications.

13.
Nanoscale ; 15(17): 7640-7675, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066602

RESUMO

Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.

14.
Langmuir ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609164

RESUMO

Spatial charge separation and migration are the critical shortcomings dominating the core energy conversion corridors of photocatalytic systems. Here, a biomimetic multi-interfacial architecture providing strong coupled interaction and rapid charge transmission for photostable and competent photocatalytic H2O2 production and H2 evolution is proposed. The triple-hybrid all-solid-state Z-scheme system was formed with the (001) facet exposed TiO2 nanosheets derived from MXene layers and B-g-C3N4 nanosheets (M/(001)TiO2@BCN) through an electrostatic self-assembly strategy with intimate electronic interaction due to Ti orbital modulation and proper stacking among the hybrids. The metallic and highly conductive MXene layers act as solid state electron mediators in the Z-scheme heterojunction that promote electron-hole separation and migration efficiency. Specifically, the MTBCN-12.5 composite provides optimum yield of H2O2 up to 1480.1 µmol h-1 g-1 and a H2 evolution rate of 408.4 µmol h-1 (with ACE 6.7%), which are 4 and 20 fold greater than the pristine BCN, respectively. The enhanced photocatalytic performance is systematically identified by the increased surface area, higher cathodic and anodic current densities of -1.01 and 2.27 mA cm-2, delayed charge recombination as supported by PL and EIS measurement, and excellent photostability. The Z-scheme charge transfer mechanism is validated by time-resolved photoluminescence (TRPL) analysis, cyclic voltametric analysis, and the radical trapping experiment as detected by PL analysis. This research marks a substantial advancement and establishes the foundation for future design ideas in accelerating charge transfer.

15.
J Colloid Interface Sci ; 634: 121-137, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535152

RESUMO

In the present work, we report the preparatory strategy of MgCr-layered double hydroxide (LDH) nanosheets with 90% degree of delamination by employing a formamide-assisted co-precipitation and mild hydrothermal route for the degradation of methylene blue (MB) under solar light exposure. The as-synthesized MgCr-LDH nanosheets were characterized by assorted characterization techniques such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, thermogravimetric analysis (TGA), N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy (XPS) and UV-Visible diffused reflectance spectroscopy (UV-DRS). The XRD pattern of MgCr-LDH nanosheets quantified the strain (ε) and dislocation density (δ) of 1.371 lines-2 m-4 and 0.5723 lines m-2 related to the (110) plane with d-spacing value of 1.6169 Ȧ. With a minimum band gap of ∼2.63 eV, the as-synthesized MgCr-LDH nanosheets displayed 90.6% MB photodegradation under the experimental protocols such as catalyst dosage of 30 mg/L, initial MB concentrations of 20 ppm, pH of 7 and time duration of 2 h under solar light exposure. Further, the recyclability test of the photocatalyst signifies material stability up to four successive cycles with 90% retention of MB degradation under sunlight exposure. The superior catalytic performances of the MgCr-LDH nanosheets could be ascertained to the suppression of excitonic recombination and effective light harvestation properties, synergistically contributed by the porous structural aspects via association of uni/multi-lamellar nanosheets, surface defect sites and photoactive Cr3+ cations. Additionally, the surface -OH groups of LDH contributed towards the generation of •OH radicals for triggering the catalytic performances. This type of work advances the novel ideas for establishing highly potent photocatalysts via synergizing structural and surface properties, paving towards effective wastewater treatment.


Assuntos
Hidróxidos , Azul de Metileno , Fotólise , Azul de Metileno/química , Hidróxidos/química , Difração de Raios X
16.
J Colloid Interface Sci ; 629(Pt B): 705-718, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36183649

RESUMO

In the existing eco-crisis, designing and engineering an efficient as well as water stable photocatalyst for energy conversion and pollutant abatement remains crucial. In this regard, a mixed linker type zirconium metal organic framework (Zr-MOF) with terepthalic acid based ditopic linkers were utilized to design a single component photocatalyst through single step solvothermal method to utilize photons from visible light illumination towards hydrogen energy (H2) production and Tetracycline Hydrochloride (TCH) degradation. The one pot synthesized mixed linker based Zr-MOF displays visible light absorption through band gap tuning, superior exciton segregation and oxygen vacancy that cumulatively supports the enhancement in the photocatalytic output with respect to their pristine counterparts. Additionally, the X-ray photoelectron spectroscopy, optical and electrochemical studies strongly reinforces the above claims. The prepared mixed linker Zr-MOF showed superior photocatalytic H2 evolution performance of 247.88 µmol h-1 (apparent conversion efficiency; ACE = 1.9%) that is twice than its pristine Zr-MOFs. Moreover, in TCH degradation, the mixed linker MOF displays an enhanced efficacy of 91.8 % and adopts pseudo-first order type kinetics with a rate constant value of 0.032. Typically, the active species participating for the TCH photo-degradation follows the order of hydroxyl (OH.) < superoxide (O2.-) radicals. Consequently, the mixed linker Zr-MOF could be effectively used as a robust photocatalyst exhibiting boosted TCH degradation and H2 production.

17.
Sci Rep ; 12(1): 9264, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661140

RESUMO

In the present work, we report the synthesis of single system three-dimensional (3D) open porous structure of MgCr-LDH nanoparticles in a substrate-free path by using one-step formamide assisted hydrothermal reaction followed by visible light irradiation for significant photoelectrochemical (PEC) properties that manifest towards photocatalytic H2 and O2 production. The as-prepared nanostructured materials were characterized by various physico-chemical characterization techniques. Moreover, this unique synthetic approach produces 3D open porous network structure of MgCr-LDH nanoparticles, which were formed by stacking of numerous 2D nanosheets, for effective light harvestation, easy electronic channelization and unveil superlative PEC properties, including high current density (6.9 mA/cm2), small Tafel slope of 82 mV/decade, smallest arc of the Nyquist plot (59.1 Ω cm-2) and photostability of 6000 s for boosting water splitting activity. In addition, such perfectly self-stacked 2D nanosheets in 3D MgCr-LDH possess more surface active defect sites as enriched 50% oxygen vacancy resulting a good contact surface within the structure for effective light absorption along with easy electron and hole separation, which facilitates the adsorption of protons and intermediate for water oxidation. Additionally, the Cr3+ as dopant pull up the electrons from water oxidation intermediates, thereby displaying superior photocatalytic H2 and O2 production activity of 1315 µmol/h and 579 µmol/h, respectively. Therefore, the open 3D morphological aspects of MgCr-LDH nanoparticles with porous network structure and high surface area possess more surface defect sites for electron channelization and identified as distinct novel features of this kind of materials for triggering significant PEC properties, along with robustly enhance the photocatalytic water splitting performances.

18.
J Colloid Interface Sci ; 621: 254-266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461140

RESUMO

The charge separation and transfer are the major issues dominating the under-laying energy conversion mechanism for photocatalytic system. Construction of semiconductor-based heterojunction system considered to be viable option for boosting the spatial charge separation and transfer in the photocatalytic water splitting system. Here, we design a ternary heterojunction of Ti3C2/N, S-TiO2/g-C3N4 by thermal annealing and ultrasonic assisted impregnation method having a well-designed n-n heterojunction and noble metal free Schottky junction for adequate hydrogen evolution. The optimal content of 4 wt% Ti3C2 on N, S-TiO2/g-C3N4 (4-TC/NST/CN) exhibit the highest rate of hydrogen generation 495.06µ mol h-1 which is 3.1, 4.1 and 1.6 fold higher than the pristine N, S doped-TiO2, g-C3N4 and binary hybrid (N, S doped-TiO2/g-C3N4) respectively, with 7% apparent conversion efficiency (ACE). The increment in the activity is described to the robust photogenerated carrier separation and double charge transfer channels because of the formation of dual heterojunction (n-n heterojunction and Schottky junction). XRD and Raman results revealed the occupancy of Ti3C2 in the heterojunction due to the strong interaction between Ti3C2, with N, S doped-TiO2 and g-C3N4. The HRTEM analysis confirmed the formation of close interfacial junction between the Ti3C2, N, S doped-TiO2 and g-C3N4. Moreover, the higher photocurrent, low PL intensity and lower impedance arc suggested the lower charge carrier recombination rate in 4-TC/NST/CN heterojunction. This work represents a significant development to establish a sound foundation for future design of MXene-based ternary hybrid system towards significant charge carrier separation and transfer for H2 production activity.

19.
Dalton Trans ; 51(14): 5352-5366, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289823

RESUMO

Janus nanoparticles (JNPs) with dual segments comprising chemically distinct compositions have garnered the attention of researchers in the past few years. The combination of different materials with diversified morphology, topology, and distinct physico-chemical characteristics into the single Janus nanocrystal has yielded multifarious capabilities for a myriad of emerging applications involving catalysis, gas separation, electro-catalysis, adsorption and energy storage. However, the traditional Janus entities significantly lack the need for populous active sites and high surface area. To overcome the textural hurdles and improve the functionalities of JNPs, porous MOFs were eventually introduced into Janus particles. MOFs are well endowed with varied pore apertures, structures, large surface areas and tailored characteristics, making them potentially invaluable for Janus fabrication. Depending upon the usage, MOFs can be explored to design Metal@MOF, polymetalic@MOF, MOF@MOF and MOF-derived JNPs. In this regard, we have represented a holistic summarization of the design, synthesis and emerging applications of a rising class of multi-functionalized MOF-based Janus nanomaterials. Moreover, this article will significantly aid researchers with a vision of creating dual-composition porous nanomaterials as the MOF-based Janus nanoparticles is at infancy.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Catálise , Estruturas Metalorgânicas/química , Metais/química , Nanoestruturas/química , Porosidade
20.
Mater Horiz ; 9(5): 1332-1355, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35139141

RESUMO

To address the growing energy demand, remarkable progress has been made in transferring the fossil fuel-based economy to hydrogen-based environmentally friendly photocatalytic technology. However, the sluggish production rate due to the quick charge recombination and slow diffusion process needs careful engineering to achieve the benchmark photocatalytic efficiency. Piezoelectric photocatalysis has emerged as a promising field in recent years due to its improved catalytic performance facilitated by a built-in electric field that promotes the effective separation of excitons when subjected to mechanical stimuli. This review discusses the recent progress in piezo-photocatalytic hydrogen evolution while elaborating on the mechanistic pathway, effect of piezo-polarization and various strategies adopted to improve piezo-photocatalytic activity. Moreover, our review systematically emphasizes the fundamentals of piezoelectricity and piezo-phototronics along with the operational mechanism for designing efficient piezoelectric photocatalysts. Finally, the summary and outlooks provide insight into the existing challenges and outline the future prospects and roadmap for the development of next-generation piezo-photocatalysts towards hydrogen evolution.


Assuntos
Hidrogênio , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...