Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 135: 107136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37647702

RESUMO

Coherent plane wave compounding (CPWC), as an ultrafast ultrasound imaging technique, makes a significant breakthrough in frame rate enhancement. However, there exists a compromise between the quality of the final image and the frame rate in CPWC. In this paper, we propose an efficient method to minimize the number of required emissions, and consequently, improve the frame rate, while maintaining the image quality. To this end, we down-sample the angle interval using two specific sampling factors. More precisely, we construct two different subsets, each of which consists of a few numbers of emissions. The optimal values of the angle intervals are achieved based on the beampattern that corresponds to the reference case (that is, the case where all plane waves are used). Finally, in order to keep the image quality comparable with the reference case, we apply some modifications to the image reconstruction procedure. In the proposed algorithm, the Delay-and-Sum beamformed images of two considered subsets are convolved to achieve the final reconstructed image. The obtained results confirm the efficiency of the proposed method in terms of frame rate improvement compared to the reference case. In particular, by using the proposed method, the required emissions in PICMUS data reduce to 16, which is 4.6 times smaller compared to the reference case. Also, the gCNR values of the proposed method and the reference case are obtained as 0.98 and 0.97, respectively, for in-vivo dataset. This demonstrates that the proposed method successfully preserves the quality of the reconstructed image by using much fewer emissions.

2.
Ultrasound Med Biol ; 49(7): 1627-1637, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087375

RESUMO

OBJECTIVE: Coherent plane wave compounding (CPWC) imaging is an efficient technique in high-frame-rate ultrasound imaging. To improve the image quality obtained from the CPWC, the adaptive minimum variance (MV) algorithm can be used. However, the high computational complexity of this algorithm negatively affects the frame rate. In other words, achieving a high frame rate and high-quality features simultaneously remains a challenge in medical ultrasound imaging. The aim of the work described here was to develop an algorithm to tackle this challenge and improve the frame rate while preserving the good quality of the resulting image. METHODS: A tensor completion (TC)-based MV algorithm is proposed to simultaneously improve the frame rate and image quality in CPWC. In the proposed method, the MV algorithm is applied to a limited number of pixels in the beamforming grid. Then, the appropriate values are assigned to the remaining unprocessed pixels by using the TC algorithm. The proposed algorithm speeds up the beamforming process, and consequently, improves the frame rate. RESULTS: The computational complexity of the proposed TC-based MV algorithm is reduced compared with that of the conventional MV algorithm while the good quality of this algorithm is preserved. The results indicate that, in particular, by processing 40% of the beamforming grid using the MV beamformer followed by the TC algorithm, a reconstructed image comparable to that in the case in which the MV algorithm is performed on the full beamforming grid is obtained; the difference between the contrast-to-noise ratio evaluation metric between these two cases is about 0.16 dB for the experimental-resolution phantom. Also, the resulting images obtained from the MV algorithm and the TC-based MV method have the same resolution, indicating that the TC-based MV algorithm can successfully achieve the quality of the MV algorithm with a lower computational complexity. CONCLUSION: The TC-based MV algorithm is proposed in CPWC with the goal of improving frame rate and image quality. Qualitative and quantitative results reveal that by use of the proposed algorithm, the quality of the reconstructed image will be comparable to that of the conventional MV algorithm, and the frame rate will be improved.


Assuntos
Algoritmos , Sistemas Computacionais , Ultrassonografia/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
3.
Ultrasonics ; 127: 106838, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36126437

RESUMO

Coherent plane-wave compounding (CPWC) is a widely used technique in medical ultrasound imaging due to its high frame rate property. It is well-known that increasing the plane waves leads to improving the image quality. However, the image quality still needs to be further improved in CPWC. In this regard, a variety of methods have been proposed. In this paper, a new compressive sensing (CS) based approach is introduced with the combination of the adaptive minimum variance (MV) algorithm to further improve the image quality in terms of resolution and contrast. In the proposed method, which is called the CS-based MV technique, the CS method is used in the receive direction to produce the beamformed data for each plane wave. Then, the MV algorithm is performed in the plane wave transmit angle direction to coherently compound the images and improve the resolution. Moreover, to deal with the high computational complexity and also, the needing for high memory space during the CS method implementation, an approximation is considered which results in considerably reduced computational burden and memory space. The results obtained from the simulated point targets show that the proposed method leads to resolution improvement for about 71%, 5.5%, and 37% respectively, compared to DAS, DAS+MV, and CS+DAS beamformers. Also, the quantitative results obtained from the experimental contrast phantom in plane wave imaging challenge in medical ultrasound (PICMUS) data show a 3.02 dB, 2.57 dB, and 2.24 dB improvement of the contrast ratio metric using the proposed method compared to DAS, DAS+MV, and double-MV methods, respectively, indicating the good performance of the proposed method in image quality improvement.


Assuntos
Algoritmos , Compressão de Dados , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ultrassonografia/métodos
4.
Ultrasonics ; 96: 55-63, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31005780

RESUMO

In linear-array photoacoustic imaging (PAI), beamforming methods can be used to reconstruct the images. Delay-and-sum (DAS) beamformer is extensively used due to its simple implementation. However, this algorithm results in high level of sidelobes and low resolution. In this paper, it is proposed to form the photoacoustic (PA) images through a regularized inverse problem to address these limitations and improve the image quality. We define a forward/backward problem of the beamforming and solve the inverse problem using a sparse constraint added to the model which forces the sparsity of the output beamformed data. It is shown that the proposed Sparse beamforming (SB) method is robust against noise due to the sparsity nature of the problem. Numerical results show that the SB method improves the signal-to-noise ratio (SNR) for about 98.69 dB, 82.26 dB and 74.73 dB, in average, compared to DAS, delay-multiply-and-sum (DMAS) and double stage-DMAS (DS-DMAS), respectively. Also, quantitative evaluation of the experimental results shows a significant noise reduction using SB algorithm. In particular, the contrast ratio of the wire phantom at the depth of 30 mm is improved about 103.97 dB, 82.16 dB and 65.77 dB compared to DAS, DMAS and DS-DMAS algorithms, respectively, indicating a better performance of the proposed SB in terms of noise reduction.

5.
J Biophotonics ; 12(6): e201800292, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30302920

RESUMO

Delay-and-sum (DAS) is one of the most common algorithms used to construct the photoacoustic images due to its low complexity. However, it results in images with high sidelobes and low resolution. Delay-and-standard-deviation (DASD) weighting factor can improve the contrast of the images compared to DAS. However, it still suffers from high sidelobes. In this work, a new weighting factor, named delay-multiply-and-standard-deviation (DMASD) is introduced to enhance the contrast of the reconstructed images compared to other mentioned methods. In the proposed method, the SD of the mutual multiplied delayed signals are calculated, normalized and multiplied to DAS beamformed data. The results show that DMASD improves the signal-to-noise-ratio about 19.29 and 7.3 dB compared to DAS and DASD, respectively, for in vivo imaging of the sentinel lymph node. Moreover, the contrast ratio is improved by the DMASD about 23.61 and 10.81 dB compared to DAS and DASD, respectively.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Linfonodo Sentinela/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Estatística como Assunto
6.
Biomed Opt Express ; 9(6): 2544-2561, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258672

RESUMO

Delay-and-sum (DAS) is the most common algorithm used in photoacoustic (PA) image formation. However, this algorithm results in a reconstructed image with a wide mainlobe and high level of sidelobes. Minimum variance (MV), as an adaptive beamformer, overcomes these limitations and improves the image resolution and contrast. In this paper, a novel algorithm, named Modified-Sparse-MV (MS-MV), is proposed in which a ℓ 1-norm constraint is added to the MV minimization problem after some modifications, in order to suppress the sidelobes more efficiently, compared to MV. The added constraint can be interpreted as the sparsity of the output of the MV beamformed signals. Since the final minimization problem is convex, it can be solved efficiently using a simple iterative algorithm. The numerical results show that the proposed method, MS-MV beamformer, improves the signal-to-noise (SNR) about 19.48 dB, in average, compared to MV. Also, the experimental results, using a wire-target phantom, show that MS-MV leads to SNR improvement of about 2.64 dB in comparison with the MV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...