Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 217-218: 106873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128700

RESUMO

Silver nanoparticles incorporation into polymeric packaging aims to prevent microbiological contamination in food products, thus ensuring superior food safety and preservation. In this context, this study aimed to verify the antimicrobial efficacy of linear low-density polyethylene (LLDPE) films incorporated with silver nanoparticles (AgNPs) dispersed in silica (SiO2) and hydroxyapatite (HAP) carriers at different concentrations. AgNPs + carriers polymer films were characterized at 0.2, 0.4, and 0.6% concentrations using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission gun-scanning electron microscope (FEG-SEM), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), and migration in acidic and non-acidic simulants. Antimicrobial action was investigated on Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and the Penicillium expansum and Fusarium solani fungi with antimicrobial activity by direct contact test and bacterial imaging by scanning electron microscopy. AgNPs addition to the LLDPE matrix did not interfere with the films' chemical and thermal properties and presented no significant migration to the external medium. For antimicrobial action, silver nanoparticles showed, in most concentrations, an inhibition percentage higher than 90% on all microorganisms studied, regardless of the carrier. However, a greater inhibitory action on S. aureus and between carriers was found, making hydroxyapatite more effective. The results indicated that nanostructured films with AgNPs + hydroxyapatite showed more promising antimicrobial action on microorganisms than AgNPs + silica, making hydroxyapatite with silver nanoparticle potentially useful in food packaging, improving safety and maintaining quality.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Polietileno/química , Polietileno/farmacologia , Dióxido de Silício/farmacologia , Embalagem de Alimentos , Staphylococcus aureus , Durapatita/farmacologia , Anti-Infecciosos/farmacologia , Polímeros/farmacologia , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984308

RESUMO

Industrial effluents and wastewater treatment have been a mainstay of environmental preservation and remediation for the last decade. Silica nanoparticles (SiO2) obtained from rice husk (RH) are an alternative to producing low-cost adsorbent and agriculture waste recovery. One adsorption challenge is facilitating the adsorbate separation and reuse cycle from aqueous medium. Thus, the present work employs SiO2 supported on polylactic acid (PLA) nanofibers obtained by the electrospinning method for Rhodamine B (RhB) dye adsorption. The silica surface was modified with trimethylsilyl chloride (TMCS) to increase affinity towards organic compounds. As a result, the silanized surface of the silica from rice husk (RHSil) promoted an increase in dye adsorption attributed to the hydrophobic properties. The PLA fibers containing 40% SiO2 (w w-1) showed about 85-95% capacity adsorption. The pseudo-first-order kinetic model was demonstrated to be the best model for PLA:SiO2 RHSil nanocomposites, exhibiting a 1.2956 mg g-1 adsorption capacity and 0.01404 min-1 kinetic constant (k1) value. In the reuse assay, PLA:SiO2 membranes preserved their adsorption activity after three consecutive adsorption cycles, with a value superior to 60%. Therefore, PLA:SiO2 nanocomposites from agricultural waste are an alternative to "low-cost/low-end" treatments and can be used in traditional treatment systems to improve dye removal from contaminated waters.

3.
Environ Sci Pollut Res Int ; 29(27): 41505-41519, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088254

RESUMO

Photocatalysts supported in magnetic nanocomposites for application in environmental remediation processes have been evaluated for removing contaminants due to easy recovery and low toxicity to the ecosystem. In this work, copper oxide (CuO) nanoparticles with photocatalytic properties were decorated on magnetic support constituted by hydroxyapatite (HAP) and ferrite to achieve efficiency in contaminated water remediation under visible light irradiation. First, nanomaterials were obtained by precipitation route, allowing fast and straightforward synthesis. Then, CuO nanoparticles with 6 nm diameter were efficiently decorated on magnetic support (25 nm), showing a high ability to absorb visible light irradiation (bandgap) to promote electronic transition and charge separation. Under visible irradiation, CuO promotes the H2O2 reduction in the conduction band (BC) to form hydroxyl radicals (•OH), which are responsible for rhodamine B (RhB) dye degradation (> 90% in 60 min). Magnetic hysteresis assays confirmed the magnetic properties of HAP/ferrite support, which enabled the recovery and reuse of the magnetic photocatalyst efficiently up to 3 cycles. Due to low Cu2+ leaching after the photocatalytic application stage, cytotoxicity assay for the Allium cepa seeds did not exhibit abnormal cells other than those commonly found. Furthermore, the CuO-decorated nanoparticles showed bactericidal activity against S. aureus (Gram-positive) and E. coli (Gram-negative) microorganisms, being more significant for the first one. Thus, the developed nanocomposite of CuO nanoparticles decorated on the magnetic support surface showed to be a complete system for water remediation, acting in contaminant degradation under visible light irradiation and bactericidal control with environmentally friendly characteristics.Graphical abstract CuO nanoparticles decorated on hydroxyapatite/ferrite magnetic support acting as a photocatalytic and bactericidal system.


Assuntos
Anti-Infecciosos , Nanopartículas , Catálise , Cobre , Durapatita , Ecossistema , Escherichia coli , Compostos Férricos , Peróxido de Hidrogênio , Luz , Staphylococcus aureus , Água
4.
Environ Sci Pollut Res Int ; 28(48): 69401-69415, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34302247

RESUMO

Various photocatalytic nanomaterials for environmental remediation have been promoted due to the pollution caused by different organic pollutants. In this study, Nb2O5 nanofibers were obtained by electrospinning technique, presenting controlled crystallinity and high specific surface area to improve the photoactivity response. The structural characterization indicated Nb2O5 nanofibers with orthorhombic phase formation. The photoluminescence measurements showed different energy levels contributing to the electronic transition events. The nanofibers with a bandgap up to 3.6 eV were applied to photocatalysis of dyes (rhodamine B (RhB) or methylene blue (MB)) and fluoxetine (FLX), listed as an emergent pollutant. In the optimized condition (pH = 9), the RhB and MB photocatalysis was 59% and 93% more efficient than photolysis due to ζ = - 50 mV ± 5 for EtOH_550 sample increased interaction with MB (cationic) compared to RhB unprotonated (pKa = 3.7). Therefore, FLX (pKa = 10.7) was selected due to protonated form at pH = 9 and showed 68% ± 1 adsorption in 30 min for EtOH_550. The FLX photocatalytic degradation under UV light irradiation was up to 17% higher than the photolytic degradation. The formation of hydroxyl radicals in the photocatalytic system (EtOH_550) was proven by the Coumarine probe assay, corroborating with the greater amount of α-[2-(methylamino)ethyl]benzylalcohol (MAEB), a by-product obtained after FLX oxidation. Additionally, the material achieved specific catalytic activity for the different organic compounds (RhB, MB, or FLX). Therefore, Nb2O5 nanofibers were efficient for degrading three different pollutants under UV light, proving a viable alternative for environmental remediation.


Assuntos
Poluentes Ambientais , Nanofibras , Catálise , Nióbio , Fotólise , Titânio
5.
Environ Sci Pollut Res Int ; 28(21): 27147-27161, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33502707

RESUMO

This study reports the preparation of TiO2 and CeO2 doped with different quantities of terbium and discusses the influence of this dopant on the photocatalytic activity of the semiconductors, with respect to the degradation of methylene blue, under ultraviolet and solar radiations. The oxides obtained were characterized by X-ray diffraction, infrared vibrational spectroscopy, diffuse reflectance spectroscopy, scanning electron microscopy, and dispersive energy spectroscopy. The results indicate that the presence of the dopant in TiO2 favored the formation of the anatase crystalline phase to the detriment of rutile, increased the band gap energy, and decreased the size of the nanoparticles. Doping CeO2 with Tb resulted in a fluorite-type crystalline structure, reduced band gap, and smaller particle size. The photocatalytic activity decreases as the concentration of terbium increases regardless of the radiation source and nature of the oxide. Furthermore, a better performance was observed for all semiconductors excited by solar radiation in comparison to ultraviolet light. The samples of pure TiO2 and TiO2 doped with 0.5 and 1% terbium showed total removal of the dye after less than 120 min of reaction, while the samples of pure CeO2 and CeO2 doped with 0.5% terbium showed approximately 80% and 57% of dye removal after 120 min, suggesting that these materials can be promising for the treatment of industrial effluents.


Assuntos
Azul de Metileno , Térbio , Catálise , Titânio
6.
Environ Sci Pollut Res Int ; 28(19): 23731-23741, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33097995

RESUMO

Nanotechnology has been studied on environmental remediation processes to foster greater photocatalysts efficiency and reuse in wastewater. This study investigated the photocatalytic efficiency and viability of niobium pentoxide (Nb2O5) nanoparticles decorated with magnetic ferrite (cobalt ferrite (CoFe2O4) or magnesium ferrite (MgFe2O4)) for atrazine photodegradation. Thus, the decorated Nb2O5 was synthesized by the polymeric precursor method, forming nanoparticles with sizes ranging from 25 to 50 nm. Nanocomposite elementary analyses showed a homogeneous distribution of elements on all particles surface. Efficient magnetic saturation was observed for pure CoFe2O4 (53 emu g-1) and MgFe2O4 (19 emu g-1) nanoparticles, promoting the magnetic removal of Nb2O5:CoFe2O4 and Nb2O5:MgFe2O4 nanocomposites. Photocatalytic assays showed 88% efficiency for atrazine photodegradation with all nanomaterials, which represented a 21% increase compared to photolysis in the 1st cycle. The magnetic nanocomposites when applied to a 5th cycle maintained the atrazine photodegradation activity. In this way, magnetic Nb2O5-based nanocomposites decorated with ferrite nanoparticles showed an efficient photocatalytic response, in addition to posterior magnetic removal from the aqueous medium. Therefore, the evaluated magnetic Nb2O5 nanocomposites may be an alternative to enhance the wastewater removal process and foster the reuse in advanced oxidative processes.


Assuntos
Nanopartículas , Águas Residuárias , Compostos Férricos , Fenômenos Magnéticos , Nióbio
7.
PLoS One ; 15(9): e0239868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986775

RESUMO

Copper oxide (CuO) has been broadly used in different technological and biological applications. However, based on the literature review, there are few reports describing the synthesis of tungsten doped copper oxide and its biological applications, although CuO and W (tungsten) based nanomaterials have been reportedly already synthesized. In this study we synthesized novel CuO and CuO/W (at.1%, 2% and 4%) nanoparticles and explored their tungsten content-dependent bactericide activity. In order to obtain the materials, was used a co-precipitation method which is of low cost. The synthesized materials were characterized by x-ray diffraction (XRD); XRD results indicated that only the sample with at.1% of W presented pure Tenorite phase. Diffuse reflectance spectroscopy (DRS) allowed to obtain the band gap energy values; CuO/W (at.2%) sample exhibited the minimum value of 2.62 eV. Grains sizes ranging from 39.78 to 53.47 nm were established through field emission-scanning electronic microscopy (FE-SEM), and these sizes were confirmed by transmission electron microscopy (TEM). Doping with W also influenced the morphology obtained in all cases. BET (Brunauer, Emmett, Teller) analysis allowed to establish an increase in specific surface area and pore size with W doping. The particle size was determined by dynamic light scattering (DLS). The bactericidal properties were tested using well diffusion method for Escherichia coli and Staphylococcus aureus bacteria. Bactericide response of CuO nanoparticles was improved by the inclusion of W dopant into the CuO structure, leading to an expansion in the inhibition zone for the CuO/W (at.1%) sample; inhibition halo diameters were 1.5 and 12 mm for CuO and CuO/W (at.1%), respectively. Hence, it was possible to infer the remarkable importance of the crystalline phase, morphology, particle size and specific superficial area of the CuO/W (at.1%) nanoparticles in its bactericide performance. WO3 secondary phase affected the bactericide response of the materials obtained at at.2% and at.4% of tungsten content.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Tungstênio/química , Tungstênio/farmacologia , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
8.
ACS Omega ; 4(17): 17477-17486, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31656919

RESUMO

α-Fe2O3 samples were manufactured by means of the polymeric precursor method. The powders were sintered and calcined at temperatures of 300-700 °C for 2 h, respectively. In the X-ray diffraction results, the formation of the rhombohedral phase without secondary phases was exhibited. The size of the particle increased after calcination at 700 °C, exhibiting a slightly more irregular morphology for the samples calcined with the addition of NH4OH in the synthesis process. From the field-emission scanning electron microscopy measurements, the particle size was determined, showing a smaller size for the samples without NH4OH in the synthesis process. The samples calcined at 600 °C had a size of 100 nm, with the sizes for lower temperatures being smaller. The size of the nanoparticle agglomerates was largest for the samples with NH4OH; however, the zeta potential was slightly lower over time for these samples. The phase study of the α-Fe2O3 nanoparticles was confirmed by means of Raman spectroscopy, without additional bands of another crystal structure. In addition, the synthesized nanoparticles exhibited good photocatalytic activity in the degradation of rhodamine B (RhB) and atrazine (ATZ) within 40 min, with a maximum degradation of 59% for ATZ and 40% for rhodamine. The best responses in the degradation were for the samples without the addition of NH4OH in the synthesis process and in proportions lower than 0.1 g. The cytotoxic effects of the nanoparticles obtained at 600 °C were evaluated in apical cells of onion roots. The results are promising for future applications because no changes were observed in the mitosis of the cells.

9.
J Fluoresc ; 21(4): 1431-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21240626

RESUMO

Nanorods and nanoplates of Y(2)O(3):Eu(3+) powders were synthesized through the thermal decomposition of the Y(OH)(3) precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y(2)O(3) matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y(2)O(3):Eu(3+) samples. The presence of Eu(3+) and the hydrothermal treatment time are responsible for the band shifts in Y(2)O(3):Eu(3+) powders, since in the pure Y(2)O(3) matrix this behavior was not observed. Y(2)O(3):Eu(3+) powders also show the characteristic Eu(3+) emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu(3+) red emission in these materials, and the Eu(3+) lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.


Assuntos
Európio/química , Nanopartículas/química , Nanotubos/química , Ítrio/química , Fluorescência , Fotoquímica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...