Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(2-1): 024118, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110011

RESUMO

Coherent transport of an excitation through a network corresponds to continuous-time quantum walk on a graph, and the transport properties of the system may be radically different depending on the graph and on the initial state. The transport efficiency, i.e., the integrated probability of trapping at a certain vertex, is a measure of the success rate of the transfer process. Purely coherent quantum transport is known to be less efficient than the observed excitation transport, e.g., in biological systems, and there is evidence that environmental noise is indeed crucial for excitation transport. At variance with this picture, we here address purely coherent transport on highly symmetric graphs, and show analytically that it is possible to enhance the transport efficiency without environmental noise, i.e., using only a minimal perturbation of the graph. In particular, we show that adding an extra weight to one or two edges, depending on whether the initial state is localized or in a superposition of two vertex states, breaks the inherent symmetries of the graph and may be sufficient to achieve unit transport efficiency. We also briefly discuss the conditions to obtain a null transport efficiency, i.e., to avoid trapping.

2.
Sci Rep ; 12(1): 11646, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804038

RESUMO

We address propagation and entanglement of Gaussian states in optical media characterised by nontrivial spectral densities. In particular, we consider environments with a finite bandwidth [Formula: see text], and show that in the low temperature regime [Formula: see text]: (i) secular terms in the master equation may be neglected; (ii) attenuation (damping) is strongly suppressed; (iii) the overall diffusion process may be described as a Gaussian noise channel with variance depending only on the bandwidth. We find several regimes where propagation is not much detrimental and entanglement may be protected form decoherence.

3.
Entropy (Basel) ; 23(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34682077

RESUMO

Active optical media leading to interaction Hamiltonians of the form H=λ˜(a+a†)ζ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media using quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling λ˜ and of the nonlinearity order ζ. Upon using tools from quantum estimation, we show that: (i) the two parameters are compatible, i.e., the may be jointly estimated without additional quantum noise; (ii) the use of squeezed probes improves precision at fixed overall energy of the probe; (iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; (iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.

4.
Phys Rev E ; 104(1-1): 014136, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412220

RESUMO

Temperature fluctuations of a finite system follow the Landau bound δT^{2}=T^{2}/C(T) where C(T) is the heat capacity of the system. In turn, the same bound sets a limit to the precision of temperature estimation when the system itself is used as a thermometer. In this paper, we employ graph theory and the concept of Fisher information to assess the role of topology on the thermometric performance of a given system. We find that low connectivity is a resource to build precise thermometers working at low temperatures, whereas highly connected systems are suitable for higher temperatures. Upon modeling the thermometer as a set of vertices for the quantum walk of an excitation, we compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.

5.
Entropy (Basel) ; 23(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435338

RESUMO

Continuous-time quantum walk describes the propagation of a quantum particle (or an excitation) evolving continuously in time on a graph. As such, it provides a natural framework for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport properties strongly depend on the initial state and specific features of the graph under investigation. In this paper, we address the role of graph topology, and investigate the transport properties of graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence, and assume a single trap vertex that is accountable for the loss processes. In particular, for each graph, we analytically determine the subspace of states having maximum transport efficiency. Our results provide a set of benchmarks for environment-assisted quantum transport, and suggest that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific correlations between transport efficiency and connectivity for certain graphs, but, in general, they are uncorrelated.

6.
Entropy (Basel) ; 22(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33286965

RESUMO

The estimation of more than one parameter in quantum mechanics is a fundamental problem with relevant practical applications. In fact, the ultimate limits in the achievable estimation precision are ultimately linked with the non-commutativity of different observables, a peculiar property of quantum mechanics. We here consider several estimation problems for qubit systems and evaluate the corresponding quantumnessR, a measure that has been recently introduced in order to quantify how incompatible the parameters to be estimated are. In particular, R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cramér-Rao bound (i.e., the matrix generalization of the single-parameter quantum Cramér-Rao bound). For all the estimation problems considered, we evaluate the quantumness R and, in order to better understand its usefulness in characterizing a multiparameter quantum statistical model, we compare it with the renormalized difference between the Holevo and the SLD-bound. Our results give evidence that R is a useful quantity to characterize multiparameter estimation problems, as for several quantum statistical model, it is equal to the difference between the bounds and, in general, their behavior qualitatively coincide. On the other hand, we also find evidence that, for certain quantum statistical models, the bound is not in tight, and thus R may overestimate the degree of quantum incompatibility between parameters.

7.
Entropy (Basel) ; 22(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33287086

RESUMO

We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions. We formalize the problem as a continuous-time quantum walk on a lattice with an impurity and use the quantum Fisher information as a means to quantify the maximal possible accuracy in the estimation of the height of the barrier. We introduce suitable initial states of the walker and derive the reflection and transmission probabilities of the scattered state. We show that while the quantum Fisher information is affected by the width and central momentum of the initial wave packet, this dependency is weaker for the quantum signal-to-noise ratio. We also show that a dichotomic position measurement provides a nearly optimal detection scheme.

8.
Phys Rev Lett ; 124(16): 163601, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383936

RESUMO

We address the use of optical parametric oscillator (OPO) to counteract phase diffusion, and demonstrate phase-noise reduction for coherent signals traveling through a suitably tuned OPO. In particular, we theoretically and experimentally show that there is a threshold value on the phase noise, above which OPO can be exploited to "squeeze" phase noise. The threshold depends on the energy of the input coherent state, and on the relevant parameters of the OPO, i.e., gain and input-output and crystal loss rates.

9.
Phys Rev Lett ; 124(12): 120504, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281838

RESUMO

Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that exploit the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols.

10.
Entropy (Basel) ; 21(5)2019 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33267200

RESUMO

It is often the case that the environment of a quantum system may be described as a bath of oscillators with an ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recently, the use of quantum probes in characterizing ohmic environments at zero-temperature has been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the analysis to a complex system at thermal equilibrium. In particular, we discuss the interplay between thermal fluctuations and time evolution in determining the precision attainable by quantum probes. Our results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff frequency, i.e., values of the order ω c ≲ T (in natural units). For larger values of ω c , decoherence is mostly due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a single qubit is still an effective estimation procedure.

11.
Phys Rev Lett ; 120(26): 260503, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004758

RESUMO

We address metrological protocols for the estimation of the intensity and the orientation of a magnetic field, and show that quantum-enhanced precision may be achieved by probing the field with an arbitrary spin at thermal equilibrium. A general expression is derived for the ultimate achievable precision, as given by the quantum Fisher information. The optimal observable is shown to correspond to the spin projection along a temperature-dependent direction, and allows a maximally precise parameter estimation also through ensemble measurements. Finally, we prove the robustness of our scheme against deviations of the measured spin projection from optimality.

12.
Sci Rep ; 7: 42050, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176835

RESUMO

Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath's correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.

13.
Sci Rep ; 6: 26054, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189630

RESUMO

The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.

14.
Opt Express ; 24(2): 1693-8, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832548

RESUMO

We analyze the effect of phase fluctuations in an optical communication scheme based on collective detection of sequences of binary coherent state symbols using linear optics and photon counting. When the phase noise is absent, the scheme offers qualitatively improved nonlinear scaling of the spectral efficiency with the mean photon number in the low-power regime compared to individual detection. We show that this feature, providing a demonstration of superaddivitity of accessible information in classical communication over quantum channels, is preserved if random phases imprinted on transmitted symbols fluctuate around a reference fixed over the sequence length.

15.
J Chem Phys ; 144(2): 024113, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26772560

RESUMO

We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one.

16.
Phys Rev Lett ; 110(1): 010501, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383765

RESUMO

We introduce the discording power of a unitary transformation, which assesses its capability to produce quantum discord, and analyze in detail the generation of discord by relevant classes of two-qubit gates. Our measure is based on the Cartan decomposition of two-qubit unitaries and on evaluating the maximum discord achievable by a unitary upon acting on classical-classical states at fixed purity. We find that there exist gates which are perfect discorders for any value of purity µ, and that they belong to a class of operators that includes the sqrt[SWAP]. Other gates, even those universal for quantum computation, do not possess the same property: the CNOT, for example, is a perfect discorder only for states with low or unit purity, but not for intermediate values. The discording power of a two-qubit unitary also provides a generalization of the corresponding measure defined for entanglement to any value of the purity.

17.
Phys Rev Lett ; 109(18): 180402, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215259

RESUMO

We address the experimental estimation of Gaussian quantum discord for a two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis, which provides nearly optimal estimation for small value of discord. In addition, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictated by the quantum Cramer-Rao bound, is limited to about 10 dB.

18.
Opt Lett ; 37(19): 3951-3, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027242

RESUMO

We present an innovative method to address the relation between the purity of type-I polarization entangled states and the spatial properties of the pump laser beam. Our all-optical apparatus is based on a spatial light modulator, and it offers unprecedented control on the spatial phase function of the entangled states. In this way, we demonstrate quantitatively the relation between the purity of the generated state and the spatial field correlation function of the pump beam.

19.
Phys Rev Lett ; 108(26): 260403, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23004941

RESUMO

We consider two celebrated criteria for defining the nonclassicality of bipartite bosonic quantum systems, the first stemming from information theoretic concepts and the second from physical constraints on the quantum phase space. Consequently, two sets of allegedly classical states are singled out: (i) the set C composed of the so-called classical-classical (CC) states-separable states that are locally distinguishable and do not possess quantum discord; (ii) the set P of states endowed with a positive P representation (P-classical states)-mixtures of Glauber coherent states that, e.g., fail to show negativity of their Wigner function. By showing that C and P are almost disjoint, we prove that the two defining criteria are maximally inequivalent. Thus, the notions of classicality that they put forward are radically different. In particular, generic CC states show quantumness in their P representation, and vice versa, almost all P-classical states have positive quantum discord and, hence, are not CC. This inequivalence is further elucidated considering different applications of P-classical and CC states. Our results suggest that there are other quantum correlations in nature than those revealed by entanglement and quantum discord.

20.
Phys Rev Lett ; 107(17): 170505, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107496

RESUMO

We address the interaction of two Gaussian states through bilinear exchange Hamiltonians and analyze the correlations exhibited by the resulting bipartite systems. We demonstrate that entanglement arises if and only if the fidelity between the two input Gaussian states falls under a threshold value depending only on their purities, first moments, and the strength of the coupling. Our result clarifies the role of quantum fluctuations (squeezing) as a prerequisite for entanglement generation and provides a tool to optimize the generation of entanglement in linear systems of interest for quantum technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...