Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711506

RESUMO

The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain "wMel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia-free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for fly growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement fly development and enhance host fitness.

2.
ISME J ; 16(9): 2160-2168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726020

RESUMO

Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.


Assuntos
Suplementos Nutricionais , Lisina , Animais , Abelhas , Dieta , Larva/microbiologia , Simbiose
3.
Artigo em Inglês | MEDLINE | ID: mdl-34546865

RESUMO

Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named 'Parasaccharibacter apium'. This bacterium is related to flower-associated microbes such as Saccharibacter floricola, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among 'P. apium', strains in the genus Saccharibacter, and strains in the closely related genus Bombella. Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as 'P. apium' and Saccharibacter species are all the same species as Bombella apis. We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.


Assuntos
Acetobacteraceae , Ácidos Graxos , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139579

RESUMO

The genus Saccharibacter is currently understudied, with only one described species, Saccharibacter floricola, isolated from a flower. In an effort to better understand the microbes that come in contact with native bee pollinators, we isolated and sequenced four additional strains of Saccharibacter from native bees in the genera Melissodes and Anthophora These genomes range in size from 2,104,494 to 2,316,791 bp (mean, 2,246,664 bp) and contain between 1,860 and 2,167 (mean, 2,060) protein-coding genes.

5.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753958

RESUMO

Bombella apis occupies a variety of distinct niches within a honey bee hive, including queen guts, royal jelly, and larval food. In an effort to better understand its evolution and identify signatures of honey bee association, we sequenced a strain isolated from hive honey stores. This genome is 2,086,308 bp long and contains 1,975 protein-coding genes.

6.
Curr Opin Microbiol ; 50: 1-7, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31563000

RESUMO

Microbial communities have considerable impacts on animal health. However, only in recent years have the host factors impacting microbiome composition been explored. An increasing wealth of microbiome data in combination with decades of research on behavior, physiology, and development have resulted in the European honey bee (Apis mellifera) as a burgeoning model system for studying the influence of host behavior on the microbiota. Honey bees are eusocial insects which exhibit striking behavioral and physiological differences between castes and life stages. These include changes in social contact, environmental exposure, diet, and physiology: all factors which can affect microbial composition and function. The honey bee system offers an opportunity to tease apart the interactive effects of all these factors on microbiota composition, abundance, and diversity.


Assuntos
Abelhas/microbiologia , Abelhas/fisiologia , Comportamento Animal , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Animais , Bactérias/classificação , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...