Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Shock ; 62(2): 193-200, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813920

RESUMO

ABSTRACT: Background: The association between neutrophil extracellular traps (NETs) and the requirement for vasopressor and inotropic support in vasoplegic shock is unclear. This study aimed to investigate the dynamics of plasma levels of NETs and cell-free DNA (cfDNA) up to 48 h after the admission to the intensive care unit (ICU) for management of vasoplegic shock of infectious (SEPSIS) or noninfectious (following cardiac surgery, CARDIAC) origin. Methods: This is a prospective, observational study of NETs and cfDNA plasma levels at 0H (admission) and then at 12H, 24H, and 48H in SEPSIS and CARDIAC patients. The vasopressor inotropic score (VIS), the Sequential Organ Failure Assessment (SOFA) score, and time spent with invasive ventilation, in ICU and in hospital, were recorded. Associations between NETs/cfDNA and VIS and SOFA were analyzed by Spearman's correlation (rho), and between NETs/cfDNA and ventilation/ICU/hospitalization times by generalized linear regression. Results: Both NETs and cfDNA remained elevated over 48 h in SEPSIS (n = 46) and CARDIAC (n = 30) patients, with time-weighted average concentrations greatest in SEPSIS (NETs median difference 0.06 [0.02-0.11], P = 0.005; cfDNA median difference 0.48 [0.20-1.02], P < 0.001). The VIS correlated to NETs (rho = 0.3-0.60 in SEPSIS, P < 0.01, rho = 0.36-0.57 in CARDIAC, P ≤ 0.01) and cfDNA (rho = 0.40-0.56 in SEPSIS, P < 0.01, rho = 0.38-0.47 in CARDIAC, P < 0.05). NETs correlated with SOFA. Neither NETs nor cfDNA were independently associated with ventilator/ICU/hospitalization times. Conclusion: Plasma levels of NETs and cfDNA correlated with the dose of vasopressors and inotropes administered over 48 h in patients with vasoplegic shock from sepsis or following cardiac surgery. NETs levels also correlated with organ dysfunction. These findings suggest that similar mechanisms involving release of NETs are involved in the pathophysiology of vasoplegic shock irrespective of an infectious or noninfectious etiology.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Choque Séptico , Humanos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Ácidos Nucleicos Livres/sangue , Idoso , Armadilhas Extracelulares/metabolismo , Choque Séptico/sangue , Vasoplegia/sangue , Sepse/sangue , Unidades de Terapia Intensiva
2.
Immunol Cell Biol ; 101(10): 882-890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842760

RESUMO

This year marks the 100th year of the publication of Immunology & Cell Biology since it was first published in March 1924 as the Australian Journal of Experimental Biology and Medical Science. In this Editorial, we recount the journal from its founding, to its focus on immunology, through to the modern era.


Assuntos
Alergia e Imunologia , Austrália
3.
Front Immunol ; 13: 930553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874740

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-producing beta cells in pancreatic islets. T lymphocytes are the claimed pathogenic effectors but abnormalities of other immune cell types, including neutrophils, also characterize T1D development. During human T1D natural history, neutrophils are reduced in the circulation, while accumulate in the pancreas where release of neutrophil extracellular traps (NETs), or NETosis, is manifest. Recent-onset T1D patients also demonstrate activated circulating neutrophils, associated with a unique neutrophil gene signature. Neutrophils can bind to platelets, leading to the formation of platelet-neutrophil aggregates (PNAs). PNAs increase in the circulation during the development of human T1D and provide a mechanism for neutrophil activation and mobilization/recruitment to the pancreas. In non-obese diabetic or NOD mice, T1D autoimmunity is accompanied by dynamic changes in neutrophil numbers, activation state, PNAs and/or NETosis/NET proteins in the circulation, pancreas and/or islets. Such properties differ between stages of T1D disease and underpin potentially indirect and direct impacts of the innate immune system in T1D pathogenesis. Supporting the potential for a pathogenic role in T1D, NETs and extracellular histones can directly damage isolated islets in vitro, a toxicity that can be prevented by small polyanions. In human T1D, NET-related damage can target the whole pancreas, including both the endocrine and exocrine components, and contribute to beta cell destruction, providing evidence for a neutrophil-associated T1D endotype. Future intervention in T1D could therefore benefit from combined strategies targeting T cells and accessory destructive elements of activated neutrophils.


Assuntos
Diabetes Mellitus Tipo 1 , Armadilhas Extracelulares , Ácidos Nucleicos Peptídicos , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neutrófilos , Ácidos Nucleicos Peptídicos/metabolismo
4.
J Immunol ; 208(12): 2738-2748, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649630

RESUMO

Liver-resident CD8+ T cells can play critical roles in the control of pathogens, including Plasmodium and hepatitis B virus. Paradoxically, it has also been proposed that the liver may act as the main place for the elimination of CD8+ T cells at the resolution of immune responses. We hypothesized that different adhesion processes may drive residence versus elimination of T cells in the liver. Specifically, we investigated whether the expression of asialo-glycoproteins (ASGPs) drives the localization and elimination of effector CD8+ T cells in the liver, while interactions with platelets facilitate liver residence and protective function. Using murine CD8+ T cells activated in vitro, or in vivo by immunization with Plasmodium berghei sporozoites, we found that, unexpectedly, inhibition of ASGP receptors did not inhibit the accumulation of effector cells in the liver, but instead prevented these cells from accumulating in the spleen. In addition, enforced expression of ASGP on effector CD8+ T cells using St3GalI-deficient cells lead to their loss from the spleen. We also found, using different mouse models of thrombocytopenia, that severe reduction in platelet concentration in circulation did not strongly influence the residence and protective function of CD8+ T cells in the liver. These data suggest that platelets play a marginal role in CD8+ T cell function in the liver. Furthermore, ASGP-expressing effector CD8+ T cells accumulate in the spleen, not the liver, prior to their destruction.


Assuntos
Linfócitos T CD8-Positivos , Malária , Animais , Receptor de Asialoglicoproteína , Fígado , Camundongos , Plasmodium berghei , Esporozoítos
5.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563015

RESUMO

It has been accepted for decades that T lymphocytes and metastasising tumour cells traverse basement membranes (BM) by deploying a battery of degradative enzymes, particularly proteases. However, since many redundant proteases can solubilise BM it has been difficult to prove that proteases aid cell migration, particularly in vivo. Recent studies also suggest that other mechanisms allow BM passage of cells. To resolve this issue we exploited heparanase-1 (HPSE-1), the only endoglycosidase in mammals that digests heparan sulfate (HS), a major constituent of BM. Initially we examined the effect of HPSE-1 deficiency on a well-characterised adoptive transfer model of T-cell-mediated inflammation. We found that total elimination of HPSE-1 from this system resulted in a drastic reduction in tissue injury and loss of target HS. Subsequent studies showed that the source of HPSE-1 in the transferred T cells was predominantly activated CD4+ T cells. Based on bone marrow chimeras, two cellular sources of HPSE-1 were identified in T cell recipients, one being haematopoiesis dependent and the other radiation resistant. Collectively our findings unequivocally demonstrate that an acute T-cell-initiated inflammatory response is HPSE-1 dependent and is reliant on HPSE-1 from at least three different cell types.


Assuntos
Glicosídeo Hidrolases , Linfócitos T , Animais , Glucuronidase/genética , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Inflamação , Mamíferos/metabolismo , Peptídeo Hidrolases , Linfócitos T/metabolismo
6.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076023

RESUMO

Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10-12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.


Assuntos
Plaquetas/imunologia , Agregação Celular/imunologia , Diabetes Mellitus Tipo 1 , Armadilhas Extracelulares , Neutrófilos/imunologia , Pâncreas , Animais , Autoanticorpos/sangue , Criança , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/imunologia , Diagnóstico Precoce , Armadilhas Extracelulares/diagnóstico por imagem , Armadilhas Extracelulares/imunologia , Feminino , Imunofluorescência/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Ativação de Neutrófilo/imunologia , Selectina-P/metabolismo , Pâncreas/imunologia , Pâncreas/patologia
7.
Nat Commun ; 13(1): 528, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082281

RESUMO

Neutrophils perform critical functions in the innate response to infection, including through the production of neutrophil extracellular traps (NETs) - web-like DNA structures which are extruded from neutrophils upon activation. Elevated levels of NETs have been linked to autoimmunity but this association is poorly understood. By contrast, IL-17 producing Th17 cells are a key player in various autoimmune diseases but are also crucial for immunity against fungal and bacterial infections. Here we show that NETs, through their protein component histones, directly activate T cells and specifically enhance Th17 cell differentiation. This modulatory role of neutrophils, NETs and their histones is mediated downstream of TLR2 in T cells, resulting in phosphorylation of STAT3. The innate stimulation of a specific adaptive immune cell subset provides an additional mechanism demonstrating a direct link between neutrophils, NETs and T cell autoimmunity.


Assuntos
Diferenciação Celular , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Células Th17/imunologia , Receptor 2 Toll-Like/metabolismo , Adulto , Autoimunidade , DNA/metabolismo , Feminino , Humanos , Imunidade Inata , Masculino , Adulto Jovem
8.
Cardiovasc Res ; 118(4): 1115-1125, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33878183

RESUMO

AIMS: Acute myocardial infarction causes lethal cardiomyocyte injury during ischaemia and reperfusion (I/R). Histones have been described as important Danger Associated Molecular Proteins (DAMPs) in sepsis. The objective of this study was to establish whether extracellular histone release contributes to myocardial infarction. METHODS AND RESULTS: Isolated, perfused rat hearts were subject to I/R. Nucleosomes and histone-H4 release was detected early during reperfusion. Sodium-ß-O-Methyl cellobioside sulfate (mCBS), a newly developed histone-neutralizing compound, significantly reduced infarct size whilst also reducing the detectable levels of histones. Histones were directly toxic to primary adult rat cardiomyocytes in vitro. This was prevented by mCBS or HIPe, a recently described, histone-H4 neutralizing peptide, but not by an inhibitor of TLR4, a receptor previously reported to be involved in DAMP-mediated cytotoxicity. Furthermore, TLR4-reporter HEK293 cells revealed that cytotoxicity of histone H4 was independent of TLR4 and NF-κB. In an in vivo rat model of I/R, HIPe significantly reduced infarct size. CONCLUSION: Histones released from the myocardium are cytotoxic to cardiomyocytes, via a TLR4-independent mechanism. The targeting of extracellular histones provides a novel opportunity to limit cardiomyocyte death during I/R injury of the myocardium.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Células HEK293 , Histonas/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Receptor 4 Toll-Like/metabolismo
9.
PLoS One ; 16(6): e0252607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086738

RESUMO

Heparan sulfate proteoglycans (HSPGs) consist of a core protein with side chains of the glycosaminoglycan heparan sulfate (HS). We have previously identified (i) the HSPGs syndecan-1 (SDC1), and collagen type XVIII (COL18) inside mouse and human islet beta cells, and (ii) a critical role for HS in beta cell survival and protection from reactive oxygen species (ROS). The objective of this study was to investigate whether endoplasmic reticulum (ER) stress contributes to oxidative stress and type 2 diabetes (T2D) by depleting beta cell HSPGs/HS. A rapid loss of intra-islet/beta cell HSPGs, HS and heparanase (HPSE, an HS-degrading enzyme) accompanied upregulation of islet ER stress gene expression in both young T2D-prone db/db and Akita Ins2WT/C96Y mice. In MIN6 beta cells, HSPGs, HS and HPSE were reduced following treatment with pharmacological inducers of ER stress (thapsigargin or tunicamycin). Treatment of young db/db mice with Tauroursodeoxycholic acid (TUDCA), a chemical protein folding chaperone that relieves ER stress, improved glycemic control and increased intra-islet HSPG/HS. In vitro, HS replacement with heparin (a highly sulfated HS analogue) significantly increased the survival of wild-type and db/db beta cells and restored their resistance to hydrogen peroxide-induced death. We conclude that ER stress inhibits the synthesis/maturation of HSPG core proteins which are essential for HS assembly, thereby exacerbating oxidative stress and promoting beta cell failure. Diminished intracellular HSPGs/HS represent a previously unrecognized critical link bridging ER stress, oxidative stress and beta cell failure in T2D.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático , Proteoglicanas de Heparan Sulfato/metabolismo , Estresse Oxidativo , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glucuronidase/genética , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Lactonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Sesquiterpenos/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Platelets ; 32(5): 662-670, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32664767

RESUMO

The ability of platelets to promote carcinoma and melanoma progression has been thoroughly studied and occurs in numerous ways. In contrast, the effect of platelets on sarcomas, tumors arising from mesenchymal cells, has received very little attention. This study was undertaken to simultaneously compare the effects of platelets on murine and human sarcomas and carcinomas. In contrast to their effect on carcinomas, platelets inhibited the invasion of some murine- and all human sarcomas tested in vitro. Further invasion studies with TGFß treatment only partially recapitulated the results seen with whole platelets. In a spontaneous tumor growth and lung metastasis model, platelets promoted 4T1 mammary carcinoma metastasis but not MCA-1 fibrosarcoma metastasis. Gene expression analysis of the platelet-promoted MDA-MB-231 breast carcinoma, and the platelet-inhibited HT1080 fibrosarcoma cell lines revealed that exposure of MDA-MB-231 to platelets, resulted in upregulation of oncogenes and EMT-associated genes whereas in HT1080 a tumor-suppressor gene was significantly upregulated. Thus, this study has revealed a potential diametrically opposing effect of platelets on mesenchymal and epithelial cancers, a finding that warrants further investigation.


Assuntos
Plaquetas/metabolismo , Carcinoma/sangue , Sarcoma/sangue , Animais , Movimento Celular , Proliferação de Células , Humanos , Camundongos , Voluntários
11.
Nat Commun ; 11(1): 6408, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328478

RESUMO

Extracellular histones in neutrophil extracellular traps (NETs) or in chromatin from injured tissues are highly pathological, particularly when liberated by DNases. We report the development of small polyanions (SPAs) (~0.9-1.4 kDa) that interact electrostatically with histones, neutralizing their pathological effects. In vitro, SPAs inhibited the cytotoxic, platelet-activating and erythrocyte-damaging effects of histones, mechanistic studies revealing that SPAs block disruption of lipid-bilayers by histones. In vivo, SPAs significantly inhibited sepsis, deep-vein thrombosis, and cardiac and tissue-flap models of ischemia-reperfusion injury (IRI), but appeared to differ in their capacity to neutralize NET-bound versus free histones. Analysis of sera from sepsis and cardiac IRI patients supported these differential findings. Further investigations revealed this effect was likely due to the ability of certain SPAs to displace histones from NETs, thus destabilising the structure. Finally, based on our work, a non-toxic SPA that inhibits both NET-bound and free histone mediated pathologies was identified for clinical development.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Histonas/metabolismo , Polímeros/farmacologia , Sepse/sangue , Sepse/tratamento farmacológico , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Feminino , Histonas/toxicidade , Humanos , Bicamadas Lipídicas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/sangue , Ativação Plaquetária/efeitos dos fármacos , Polieletrólitos , Polímeros/química , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia , Sepse/patologia
12.
Adv Exp Med Biol ; 1221: 71-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274707

RESUMO

Heparanase is an endo-ß-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.


Assuntos
Glucuronidase/história , Glucuronidase/metabolismo , Animais , Glucuronidase/genética , Heparitina Sulfato/metabolismo , História do Século XX , História do Século XXI , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/enzimologia , Neoplasias/patologia , Neovascularização Patológica
13.
Adv Exp Med Biol ; 1221: 607-630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274728

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-ß-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.


Assuntos
Diabetes Mellitus Tipo 1/enzimologia , Glucuronidase/metabolismo , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Glucuronidase/antagonistas & inibidores , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/patologia
14.
Chem Sci ; 11(8): 2045-2050, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32180926

RESUMO

Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further overcame the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.

15.
J Thromb Haemost ; 18(6): 1447-1458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32198957

RESUMO

BACKGROUND: Collagen and fibrin engagement and activation of glycoprotein (GP) VI induces proteolytic cleavage of the GPVI ectodomain generating shed soluble GPVI (sGPVI). Collagen-mediated GPVI shedding requires intracellular signalling to release the sGPVI, mediated by A Disintegrin And Metalloproteinase 10 (ADAM10); however, the precise mechanism by which fibrin induces GPVI shedding remains elusive. Plasma sGPVI levels are elevated in patients with coagulopathies, sepsis, or inflammation and can predict onset of sepsis and sepsis-related mortality; therefore, it is clinically important to understand the mechanisms of GPVI shedding under conditions of minimal collagen exposure. OBJECTIVES: Our aim was to characterize mechanisms by which fibrin-GPVI interactions trigger GPVI shedding. METHODS: Platelet aggregometry, sGPVI ELISA, and an ADAM10 fluorescence resonance energy transfer assay were used to measure fibrin-mediated platelet responses. RESULTS: Fibrin induced αIIbß3-independent washed platelet aggregate formation, GPVI shedding, and increased ADAM10 activity, all of which were insensitive to pre-treatment with inhibitors of Src family kinases but were divalent cation- and metalloproteinase-dependent. In contrast, treatment of washed platelets with other GPVI ligands, collagen, and collagen-related peptide caused αIIbß3-dependent platelet aggregation and GPVI release but did not increase constitutive ADAM10 activity. CONCLUSIONS: Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.


Assuntos
Fibrina , Glicoproteínas da Membrana de Plaquetas , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Plaquetas , Humanos , Proteínas de Membrana , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas
16.
Methods Protoc ; 3(1)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979362

RESUMO

Bioluminescent tumor cell lines are used extensively in vivo to monitor tumor growth and metastasis but rarely used in vitro to follow tumor cell behavior. Tumor cell migration is frequently studied in vitro using transwell assays, however, current methods do not permit the co-incubation of tumor cells with different stromal cell types for analysis of the effects of intercellular cross-talk on tumor cell migration. We describe a novel migration assay using bioluminescent tumor cell lines that is rapid, accurate, and permits the study of the effects of tumor cell-stromal cell interactions on tumor cell migratory behavior.

17.
Virology ; 529: 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622027

RESUMO

Vaccinia virus (VACV), like many other viruses, binds to cell surface heparan sulfate (HS) prior to infecting cells. Since HS is ubiquitously expressed extracellularly, it seemed likely that VACV-HS interaction may impede virus spread, with host heparanase, the only known mammalian endoglycosidase that can degrade HS, potentially overcoming this problem. In support of this hypothesis, we found that, compared to wild type, mice deficient in heparanase showed a 1-3 days delay in the spread of VACV to distant organs, such as ovaries, following intranasal inoculation, or to ovaries and spleen following intramuscular inoculation. These delays in spread occurred despite heparanase deficiency having no effect on VACV replication at inoculation sites. Subsequent in vitro studies revealed that heparanase treatment released VACV from HS expressing, but not HS deficient, infected cell monolayers. Collectively these data suggest that VACV relies on host heparanase to degrade HS in order to spread to distant sites.


Assuntos
Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Vaccinia virus/metabolismo , Animais , Glucuronidase/genética , Heparitina Sulfato/genética , Humanos , Camundongos , Camundongos Knockout , Replicação Viral
18.
Cancer Immunol Immunother ; 67(9): 1461-1472, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30014244

RESUMO

INTRODUCTION: In this phase I study using a 3 + 3 dose escalation design, the safety, dose-limiting toxicity (DLT), immunogenicity and efficacy of intravenous Lipovaxin-MM-a multi-component dendritic cell-targeted liposomal vaccine against metastatic melanoma-was investigated. METHODS: Twelve subjects with metastatic cutaneous melanoma were recruited in three cohorts. Patients in Cohort A (n = 3) and Cohort B (n = 3) received three doses of 0.1 and 1 mL of Lipovaxin-MM, respectively, every 4 weeks. Patients in Cohort C (n = 6) received four doses of 3 mL vaccine weekly. Immunologic assessments of peripheral blood were made at regular intervals and included leukocyte subsets, cytokine levels, and Lipovaxin-MM-specific T-cell and antibody reactivities. Tumor responses were assessed by RECIST v1.0 at screening, then 8 weekly in Cohorts A and B and 6 weekly in Cohort C. RESULTS: Of a total of 94 adverse events (AEs) reported in ten subjects, 43 AEs in six subjects were considered to be possibly or probably vaccine-related. Most (95%) vaccine-related AEs were grade 1 or 2, two (5%) grade 3 vaccine-related AEs of anemia and lethargy were recorded, and higher grade AEs and DLTs were not observed. No consistent evidence of vaccine-specific humoral or cellular immune responses was found in post-immunization blood samples. One patient had a partial response, two patients had stable disease, and the remaining patients had progressive disease. CONCLUSIONS: Lipovaxin-MM was well tolerated and without clinically significant toxicity. Immunogenicity of Lipovaxin-MM was not detected. Partial response and stable disease were observed in one and two patients, respectively.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Melanoma/terapia , Neoplasias Cutâneas/terapia , Adulto , Idoso , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Células Dendríticas/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Feminino , Humanos , Lipossomos/administração & dosagem , Lipossomos/imunologia , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Neoplasias Cutâneas/imunologia , Melanoma Maligno Cutâneo
19.
Oncotarget ; 9(30): 21613-21627, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29765563

RESUMO

Pancreatic cancer has a dismal prognosis particularly in patients presenting with unresectable tumors. We performed a bibliometric analysis of clinical trials for pancreatic cancer conducted between 2014-2016 focusing on patients that presented with unresectable (locally advanced or metastatic) tumors. We discuss a range of studies that employed FOLFIRINOX, the gemcitabine + nab-paclitaxel combination and studies that used molecularly-targeted therapy. Major areas of focus have been dual targeting of EGFR and VEGFR, immunotherapy or a multimodal approach - combining chemotherapy with radiotherapy. We also point out the need for molecular selection for low prevalence subtypes. Key insights sourced from these pivotal trials should improve clinical outcomes for this devastating cancer.

20.
Oncogene ; 37(37): 5115-5126, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29844573

RESUMO

Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (n = 17) and in 83% of metastatic melanoma cells (n = 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (n = 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4+ cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity.


Assuntos
DNA Catalítico/genética , Melanoma/genética , Animais , Antígenos CD4/genética , Antígenos CD8/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-jun/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...