Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920121

RESUMO

Precise control of gene expression is crucial to ensure proper development and biological functioning of an organism. Enhancers are non-coding DNA elements which play an essential role in regulating gene expression. They contain specific sequence motifs serving as binding sites for transcription factors which interact with the basal transcription machinery at their target genes. Heart development is regulated by intricate gene regulatory network ensuring precise spatiotemporal gene expression program. Mutations affecting enhancers have been shown to result in devastating forms of congenital heart defect. Therefore, identifying enhancers implicated in heart biology and understanding their mechanism is key to improve diagnosis and therapeutic options. Despite their crucial role, enhancers are poorly studied, mainly due to a lack of reliable way to identify them and determine their function. Nevertheless, recent technological advances have allowed rapid progress in enhancer discovery. Model organisms such as the zebrafish have contributed significant insights into the genetics of heart development through enabling functional analyses of genes and their regulatory elements in vivo. Here, we summarize the current state of knowledge on heart enhancers gained through studies in model organisms, discuss various approaches to discover and study their function, and finally suggest methods that could further advance research in this field.


Assuntos
Elementos Facilitadores Genéticos/genética , Redes Reguladoras de Genes/genética , Coração/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiopatologia , Humanos , Mutação/genética , Peixe-Zebra/genética
2.
Antioxidants (Basel) ; 8(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817462

RESUMO

The objective of this review is to briefly summarize the recent progress in studies done on the assessment of reprotoxicity risk posed by global warming for the foundation of strategic tool in ecosystem-based adaptation. The selected animal data analysis that was used in this paper focuses on antioxidative markers and fertility rate estimated over the period 2000-2019. We followed a phylogenetic methodology in order to report data on a panel of selected organisms that show dangerous effects. The oxidative damage studies related to temperature fluctuation occurring in biosentinels of different invertebrate and vertebrate classes show a consistently maintained physiological defense. Furthermore, the results from homeothermic and poikilothermic species in our study highlight the influence of temperature rise on reprotoxicity.

3.
Antioxidants (Basel) ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698730

RESUMO

The ageing process in living organisms is characterised by the accumulation of several deleterious changes occurring in cells and tissues. The increase of reactive oxygen species with the advancement of age is responsible for the oxidative damage to proteins, lipids and DNA, enhancing the risk of diseases. The antioxidant response and the activation of the poly(ADP-ribosyl)ation process represent the first defences activated by organisms at all life stages to counteract damage to cell structures and genomic material. The regulation of poly(ADP ribosyl)ation with age is little known in plants, especially in combination with antioxidant defences modulation. In this study, the relationships between poly (ADP-ribose) polymerase (PARP) activity and enzymatic and non-enzymatic antioxidant pool have been studied together with the photosynthetic apparatus efficiency in the Mediterranean species Cistus incanus L., examining leaves at different developmental stages: young, mature and senescent. The photosynthetic performance was evaluated by chlorophyll a fluorescence measurement, the total soluble and fat-soluble antioxidant capacity, as well as the activities of enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST), were determined by spectrophotometer, PARP activity was assessed by radioactive labelling. The highest photochemical activity was observed in young leaves, together with the highest GST activity. With the progress of the ageing process, the non-enzymatic antioxidant pool (namely ascorbic acid, α-tocopherol) declined, reaching the lowest value in senescent leaves, whereas PARP activity rose significantly. The overall results indicate that the decline of photosynthetic apparatus efficiency during senescence is due to the reduction of specific defences against oxidative damages, which increase the damages to DNA, as demonstrated by PARP activity rise.

4.
Mol Reprod Dev ; 86(10): 1378-1387, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30957323

RESUMO

There is rising concern for the interaction of environmental contaminants with brain transcriptome and the potential effect on reproductive processes. The present study sought to determine selenoprotein glutathione peroxidase 4 (gpx4) transcriptional activity in the brain and testis of the soil biosentinel, Podarcis sicula, through the main phases of the reproductive cycle and whether pharmaceuticals exert an endocrine disruption. Based on gpx4 cloned amminoacids sequence (GenBank AEX09236.1.), we used a bioinformatic approach to assess the structural role. Specifically, we detected seasonally the reactive oxygen species (ROS) level using electron spin resonance spectroscopy and gpx4 transcriptional activity using quantitative real-time polymerase chain reaction. In addition, the impact of pharmaceuticals was assessed after 21-days of treatment with ICI 182,780 and human chorionic gonadotropin administration in mating and winter stasis, respectively. Bioinformatic data shows the gpx4 proteic activity and a phylogenetic profile. ROS contents in lizard brain are significantly less than in testis and display higher levels after treatments. Brain gpx4 expression gives statistically significant seasonal differences, opposite trends in testis and altered expression in both tissues, with evidence of testis morphological and DNA disruption. Taken together, these results provide direct evidence that gpx4 in P. sicula plays a seasonal regulatory role and may be a reliable biomarker for reproductive health toxicity screening.


Assuntos
Disruptores Endócrinos/toxicidade , Lagartos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Reprodução/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Química Encefálica/efeitos dos fármacos , Lagartos/genética , Lagartos/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/análise , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Estações do Ano , Testículo/química , Testículo/efeitos dos fármacos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...