Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 3011-3022, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235673

RESUMO

The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Hidrogéis/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química
2.
J Pept Sci ; 29(11): e3524, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37226306

RESUMO

D-Ser(tBu)-L-Phe-L-Trp is described as a self-assembling tripeptide that yields nanofibrillar hydrogels at physiological conditions (phosphate buffer at pH 7.4). The peptide is characterized by several spectroscopic methods, such as circular dichroism and fluorescence, oscillatory rheometry, and transmission electron microscopy. Single-crystal X-ray diffraction reveals supramolecular packing into water-bound channels and allows the visualization of the intermolecular interactions holding together peptide stacks.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Microscopia Eletrônica de Transmissão , Cristalografia por Raios X , Dicroísmo Circular , Água
3.
ACS Nano ; 15(2): 3015-3025, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33576622

RESUMO

Self-assembling peptides are being applied both in the biomedical area and as building blocks in nanotechnology. Their applications are closely linked to their modes of self-assembly, which determine the functional nanostructures that they form. This work brings together two structural elements that direct nanoscale self-association in divergent directions: proline as a ß-breaker and the ß-structure-associated diphenylalanine motif, into a single tripeptide sequence. Amino acid chirality was found to resolve the tension inherent to these conflicting self-assembly instructions. Stereoconfiguration determined the ability of each of the eight possible Pro-Phe-Phe stereoisomers to self-associate into diverse nanostructures, including nanoparticles, nanotapes, or fibrils, which yielded hydrogels with gel-to-sol transition at a physiologically relevant temperature. Three single-crystal structures and all-atom molecular dynamics simulations elucidated the ability of each peptide to establish key interactions to form long-range assemblies (i,e., stacks leading to gelling fibrils), medium-range assemblies (i.e., stacks yielding nanotapes), or short-range assemblies (i.e., dimers or trimers that further associated into nanoparticles). Importantly, diphenylalanine is known to serve as a binding site for pathological amyloids, potentially allowing these heterochiral systems to influence the fibrillization of other biologically relevant peptides. To probe this hypothesis, all eight Pro-Phe-Phe stereoisomers were tested in vitro on the Alzheimer's disease-associated Aß(1-42) peptide. Indeed, one nonfibril-forming stereoisomer effectively inhibited Aß fibrillization through multivalent binding between diphenylalanine motifs. This work thus defined heterochirality as a useful feature to strategically develop future therapeutics to interfere with pathological processes, with the additional value of resistance to protease-mediated degradation and biocompatibility.


Assuntos
Nanoestruturas , Peptídeos , Amiloide , Hidrogéis , Nanotecnologia
4.
ACS Nano ; 14(12): 16951-16961, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33175503

RESUMO

Diphenylalanine is an amyloidogenic building block that can form a versatile array of supramolecular materials. Its shortcomings, however, include the uncontrolled hierarchical assembly into microtubes of heterogeneous size distribution and well-known cytotoxicity. This study rationalized heterochirality as a successful strategy to address both of these pitfalls and it provided an unprotected heterochiral dipeptide that self-organized into a homogeneous and optically clear hydrogel with excellent ability to sustain fibroblast cell proliferation and viability. Substitution of one l-amino acid with its d-enantiomer preserved the ability of the dipeptide to self-organize into nanotubes, as shown by single-crystal XRD analysis, whereby the pattern of electrostatic and hydrogen bonding interactions of the backbone was unaltered. The effect of heterochirality was manifested in subtle changes in the positioning of the aromatic side chains, which resulted in weaker intermolecular interactions between nanotubes. As a result, d-Phe-l-Phe self-organized into homogeneous nanofibrils with a diameter of 4 nm, corresponding to two layers of peptides around a water channel, and yielded a transparent hydrogel. In contrast with homochiral Phe-Phe stereoisomer, it formed stable hydrogels thermoreversibly. d-Phe-l-Phe displayed no amyloid toxicity in cell cultures with fibroblast cells proliferating in high numbers and viability on this biomaterial, marking it as a preferred substrate over tissue-culture plastic. Halogenation also enabled the tailoring of d-Phe-l-Phe self-organization. Fluorination allowed analogous supramolecular packing as confirmed by XRD, thus nanotube formation, and gave intermediate levels of bundling. In contrast, iodination was the most effective strategy to augment the stability of the resulting hydrogel, although at the expense of optical transparency and biocompatibility. Interestingly, iodine presence hindered the supramolecular packing into nanotubes, resulting instead into amphipathic layers of stacked peptides without the occurrence of halogen bonding. By unravelling fine details to control these materials at the meso- and macro-scale, this study significantly advanced our understanding of these systems.

5.
Curr Top Med Chem ; 20(14): 1300-1309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32178611

RESUMO

Supramolecular antimicrobial hydrogels based on peptides are attractive soft materials for the treatment of infections, considering their ease of preparation and benign fate in biological settings and in the environment. In particular, stimuli-responsive systems that can be assembled/disassembled ad hoc could offer the opportunity to switch on/off their bioactivity as needed. Besides, the shorter is the peptide, the lower its cost of production. However, a structure-to-function relationship is yet to be defined and reported activities are generally not yet competitive relative to traditional antibiotics. Inspiration for their design can be found in host defense peptides (HDPs), which can self-assemble to exert their function. This article reviews research developments in this emerging area, and it examines features, differences and similarities between antimicrobial and amyloid peptides to open the avenue towards the next generation of supramolecular antimicrobial peptides as innovative therapeutic materials.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Hidrogéis/química , Amiloide/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/química , Descoberta de Drogas , Humanos , Multimerização Proteica
6.
Chem Commun (Camb) ; 56(20): 3015-3018, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32048648

RESUMO

The uncapped tripeptide DPhe-Phe-Leu acts as self-assembly template to yield supramolecular hydrogel biomaterials. As an example, self-assembling DPhe-Phe-Leu-Asp-Val contains the LDV bioadhesive motif for ß1 integrin activation. Hydrogels made of the two peptides successfully mimic fibronectin of the extracellular matrix and lead to high cell viability, adhesion, and spreading.


Assuntos
Hidrogéis/química , Imagem Óptica , Peptídeos/química , Adesão Celular , Sobrevivência Celular , Fibroblastos/química , Humanos , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Gels ; 5(1)2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30691142

RESUMO

In this work, we present Thioflavin T fluorescence, transmission electron microscopy (TEM), circular dichroism (CD), Fourier-transformed infrared (FT-IR), and oscillatory rheometry studies applied to an antineoplastic drug, 5-fluorouracil (5-FU), embedded in a heterochiral tripeptide hydrogel to obtain a drug delivery supramolecular system. The release of 5-fluorouracil was monitored over time by reverse-phase high-performance liquid chromatography (HPLC) and its interaction with the tripeptide assemblies was probed by all-atom molecular dynamics simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...