Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 104(1): 1-13, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18171378

RESUMO

Extensive research has been conducted on the development of three groups of naturally occurring antimicrobials as novel alternatives to antibiotics: bacteriophages (phages), bacterial cell wall hydrolases (BCWH), and antimicrobial peptides (AMP). Phage therapies are highly efficient, highly specific, and relatively cost-effective. However, precautions have to be taken in the selection of phage candidates for therapeutic applications as some phages may encode toxins and others may, when integrated into host bacterial genome and converted to prophages in a lysogenic cycle, lead to bacterial immunity and altered virulence. BCWH are divided into three groups: lysozymes, autolysins, and virolysins. Among them, virolysins are the most promising candidates as they are highly specific and have the capability to rapidly lyse antibiotic-resistant bacteria on a generally species-specific basis. Finally, AMP are a family of natural proteins produced by eukaryotic and prokaryotic organisms or encoded by phages. AMP are of vast diversity in term of size, structure, mode of action, and specificity and have a high potential for clinical therapeutic applications.


Assuntos
Anti-Infecciosos , Infecções Bacterianas/terapia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bacteriófagos , Parede Celular/enzimologia , Desenho de Fármacos , Resistência Microbiana a Medicamentos , Hidrolases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...