Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485985

RESUMO

Whole slide imaging (WSI) refers to the process of creating a high-resolution digital image of a whole slide. Since digital images are typically produced by stitching image sequences acquired from different fields of view, the visual quality of the images can be degraded owing to shading distortion, which produces black plaid patterns on the images. A shading correction method for brightfield WSI is presented, which is simple but robust not only against typical image artifacts caused by specks of dust and bubbles, but also against fixed-pattern noise, or spatial variations in pixel values under uniform illumination. The proposed method comprises primarily of two steps. The first step constructs candidates of a shading distortion model from a stack of input image sequences. The second step selects the optimal model from the candidates. The proposed method was compared experimentally with two previous state-of-the-art methods, regularized energy minimization (CIDRE) and background and shading correction (BaSiC) and showed better correction scores, as smooth operations and constraints were not imposed when estimating the shading distortion. The correction scores, averaged over 40 image collections, were as follows: proposed method, 0.39 ± 0.099; CIDRE method, 0.67 ± 0.047; BaSiC method, 0.55 ± 0.038. Based on the quantitative evaluations, we can confirm that the proposed method can correct not only shading distortion, but also fixed-pattern noise, compared with the two previous state-of-the-art methods.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Iluminação , Microscopia/métodos , Cor
2.
J Biomed Opt ; 23(7): 1-8, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30008193

RESUMO

We report herein the fabrication and performance response of a three-dimensional (3-D) intraoral scan probe based on optical coherence tomography (OCT) that enables 3-D structural and functional diagnoses of the human teeth. The OCT system was configured using a swept-source OCT (SS-OCT) with a center wavelength of 1310 nm. The scan probe was built using an MEMS mirror and an optical collimator. The implemented SS-OCT equipped with the MEMS-based scan probe yielded an axial resolution of 10 µm and a scan range of 8 × 8 mm2. Two-dimensional (2-D) cross-sectional images of the teeth were acquired by the scan probe based on the OCT. The 3-D volume image was acquired by combining a series of 2-D images, which includes internal and structural information of the human teeth. To utilize the OCT system as an intraoral scanner, partially overlapped 3-D volume images were sequentially acquired and stitched. The 3-D stitching was implemented based on an iterative closest point algorithm. The feasibility of the intraoral scan probe is demonstrated based on its ability to image and characterize the structure and function of the human teeth.


Assuntos
Diagnóstico Bucal/métodos , Tomografia de Coerência Óptica/métodos , Dente/diagnóstico por imagem , Algoritmos , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Tomografia de Coerência Óptica/instrumentação
3.
Sensors (Basel) ; 17(7)2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28714897

RESUMO

We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast.


Assuntos
Iluminação , Algoritmos , Imageamento Tridimensional , Lentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...