Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(36): 8157-8164, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669560

RESUMO

We employed infrared scattering-type scanning near-field optical microscopy (IR-sSNOM) to study surface plasmon polaritons (SPPs) in trilayer graphene (TLG). Our study reveals systematic differences in near-field IR spectra and SPP wavelengths between Bernal (ABA) and rhombohedral (ABC) TLG domains on SiO2, which can be explained by stacking-dependent intraband conductivities. We also observed that the SPP reflection profiles at ABA-ABC boundaries could be mostly accounted for by an idealized domain boundary defined by the conductivity discontinuity. However, we identified distinct shapes in the SPP profiles at the edges of the ABA and ABC TLG, which cannot be solely attributed to idealized edges with stacking-dependent conductivities. Instead, this can be explained by the presence of various edge structures with local conductivities differing from those of bulk TLGs. Our findings unveil a new structural element that can control SPP, and provide insights into the structures and electronic states of the edges of few-layer graphene.

2.
Nanoscale ; 10(13): 5840-5844, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542788

RESUMO

Ferrous ion-based catalysts have been widely employed to oxidatively destruct the major industrial pollutants such as phenolic compounds through advanced oxidation processes (AOPs). These agents, however, inevitably show several drawbacks including the need for pH adjustment and further purification steps to remove residual salts. Here we report the use of a chemical vapour deposition (CVD) graphene film as a novel metal-free catalyst for the AOP-based degradation of phenols in aqueous solution, which does not require additional steps for salt removal nor external energy to activate the process. We have also verified that the catalytic activity is strongly dependent on the surface area of the graphene film and the degradation efficiency can be markedly improved by exploiting an array of multiple graphene films. Finally, the recyclability of the graphene film has been validated by performing repetitive degradation tests to ensure its practical use.

3.
Nanoscale ; 9(12): 4191-4195, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28287222

RESUMO

Bilayer graphene (BLG) shows great potential as a new material for opto-electronic devices because its bandgap can be controlled by varying the stacking orders, as well as by applying an external electric field. An imaging technique that can visualize and characterize various stacking domains in BLG may greatly help in fully utilizing such properties of BLG. Here we demonstrate that infrared (IR) scattering-type scanning near-field optical microscopy (sSNOM) can visualize Bernal and non-Bernal stacking domains of BLG, based on the stacking-specific inter- and intra-band optical conductivities. The method enables nanometric mapping of stacking domains in BLG on dielectric substrates, augmenting current limitations of Raman spectroscopy and electron microscopy techniques for the structural characterization of BLG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...