Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502862

RESUMO

In this paper, a simple printed cross-dipole (PCD) antenna to achieve a right-hand circular polarization (RHCP) at the L/S-band for direction finding (DF) systems is presented. The radiating part of the antenna consists of two printed dipoles that interlock with each other and are mounted orthogonally on a dual-layer printed reflector. To connect the feedlines of the dipole elements to the antenna's feed network, which is located on the backside of the reflector, a through-hole signal via (THSV) is employed as the signal interconnection instead of the mainstream approach of using coaxial bead conductor. This feeding technique provides a degree of freedom to control the impedance of the signal path between the feedlines and the feed network in the numerical simulation for improved matching conditions. The proposed THSV extending through the dual-layer printed reflector is more reliable, durable, and mechanically robust to stabilize the matching conditions of the fabricated antenna in contrast to the coaxial-based approach that is more susceptible to impedance mismatch due to solder fatigue. Thus, the proposed PCD antenna offers advantages of broadband, flexible impedance matching, and fabrication ease. The antenna exhibits an impedance bandwidth (IBW) of 59% (1.59-2.93 GHz), a 3-dB axial ratio bandwidth (ARBW) of 57% (1.5-2.7 GHz), and a peak of 7.5 dB within the operating frequency band.

2.
Sci Rep ; 9(1): 7120, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053758

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Opt Express ; 26(23): 29916-29930, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469874

RESUMO

A delta-sigma-modulated intermediate-frequency-over-fiber (IFoF) transmission system assisted by a correlative-level coding technique is proposed and experimentally demonstrated. Unlike conventional delta-sigma IFoF systems with multiple output levels to achieve higher signal quality or larger capacity, a correlative-level encoder is exploited as a second modulator preceded by the delta-sigma modulator. The encoder compresses the bandwidth of the delta-sigma modulated signal by creating a correlation between adjacent signal symbols. As a result, the sampling frequency of the delta-sigma modulator in the proposed system can be increased beyond the transmission bandwidth of the IFoF system, considerably improving the in-band signal quality and the transmission capacity over the conventional multi-level approach. This is because the quantization noise from the delta-sigma modulation in the proposed scheme is more aggressively pushed away from the signal bandwidth with the high sampling frequency. According to experimental results, the proposed link provides at least a 40% larger transmission capacity for similar in-band signal quality or 2.1% better average EVM performance for the same capacity than the conventional four-level pulse-amplitude-modulation delta-sigma IFoF systems.

4.
Sci Rep ; 8(1): 14996, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301910

RESUMO

A frequency reconfigurable dipole antenna based on a silicon radiator is presented. The silicon radiator is activated with the aid of highly dense solid-state plasma by injecting carriers into the intrinsic region of p-i-n diodes. The fabrication and design guideline of the reconfigurable dipole antenna with this plasma radiator are described. When the plasma radiator is activated or deactivated, the length of the dipole arm changes, which means that the operating frequency of the dipole antenna is reconfigurable. When all the channels in the plasma radiator are activated, the operating frequency is tuned from 6.3 GHz to 4.9 GHz. The measured tunable bandwidth of our fabricated dipole antenna is approximately 31%, which is a practical value in comparison to conventional frequency reconfigurable antennas whose tunable bandwidth is in a range from 20% to 50%. To further support the validity of our results, we provide the well-matched simulation results from an antenna simulation. These results demonstrate that silicon with its commercial technology, which has not attracted attention in comparison to a metal antennas, is a promising tunable material for a frequency reconfigurable antenna. This plasma-based reconfigurable antenna has great potential for use in the dynamic communication environment.

5.
Sci Rep ; 7(1): 17232, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222422

RESUMO

This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 104 and 105 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.

6.
Opt Express ; 25(7): 8335-8349, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380948

RESUMO

Two ∆Σ-modulated digital radio-over-fiber (DRoF) transmission systems that employ a multi-pulse Manchester encoder are proposed and experimentally evaluated. With a two-step modulation process comprised of ∆Σ modulation and multi-pulse Manchester encoding, a high frequency replica or image of a ∆Σ-digitized analog communication signal can be transmitted without significant power loss. This is achieved by exploiting the spectral characteristics of the modified Manchester code. For comparative analysis, a conventional ∆Σ-modulation-based DRoF system is also evaluated. Based on the evaluation results, the proposed DRoF systems more significantly improve the reliability and flexibility of the RoF system by providing higher power margins or by making the DRoF system implementation more cost-effective and easier to perform on account of the low-frequency requirement for electronics and optical transceivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...