Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(38): 43897-43906, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121320

RESUMO

Discovery of ferroelectricity in HfO2 has sparked a lot of interest in its use in memory and logic due to its CMOS compatibility and scalability. Devices that use ferroelectric HfO2 are being investigated; for example, the ferroelectric field-effect transistor (FEFET) is one of the leading candidates for next generation memory technology, due to its area, energy efficiency and fast operation. In an FEFET, a ferroelectric layer is deposited on Si, with an SiO2 layer of ∼1 nm thickness inevitably forming at the interface. This interfacial layer (IL) increases the gate voltage required to switch the polarization and write into the memory device, thereby increasing the energy required to operate FEFETs, and makes the technology incompatible with logic circuits. In this work, it is shown that a Pt/Ti/thin TiN gate electrode in a ferroelectric Hf0.5Zr0.5O2 based metal-oxide-semiconductor (MOS) structure can remotely scavenge oxygen from the IL, thinning it down to ∼0.5 nm. This IL reduction significantly reduces the ferroelectric polarization switching voltage with a ∼2× concomitant increase in the remnant polarization and a ∼3× increase in the abruptness of polarization switching consistent with density functional theory (DFT) calculations modeling the role of the IL layer in the gate stack electrostatics. The large increase in remnant polarization and abruptness of polarization switching are consistent with the oxygen diffusion in the scavenging process reducing oxygen vacancies in the HZO layer, thereby depinning the polarization of some of the HZO grains.

2.
Lab Chip ; 11(21): 3649-55, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21918771

RESUMO

We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 µL or 20 µL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system.


Assuntos
DNA Bacteriano/isolamento & purificação , Bactérias Gram-Positivas/genética , Automação , DNA Bacteriano/análise , Dimetilpolisiloxanos/química , Membranas Artificiais , Técnicas Analíticas Microfluídicas , Miniaturização , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus aureus/genética
3.
Electrophoresis ; 30(18): 3153-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19722215

RESUMO

We report an insulator-based (or, electrodeless) dielectrophoresis utilizing microfabricated plastic membranes. The membranes with honeycomb-type pores have been fabricated by patterning the SU-8 layer on a substrate which was pretreated with self-assembled monolayer of octadecyltrichlorosilane for the easy release. The fabricated membrane was positioned between two electrodes and alternating current field was applied for the particle trap experiments. The particle could be trapped due to the dielectrophoresis force generated by the non-uniformities of the electric fields applied through the membranes with pores. Simulations using CFD-ACE+(CFD Research, Huntsville, Alabama) suggested that the dielectrophoresis force is stronger in the edge of the pores where the field gradient is highest. The bacteria could be captured on the near edge of the pores when the electric field was turned on and the trapped bacteria could be released when the field was turned off with the release efficiency of more than 93+/-7%. The maximal trapping efficiency of 66+/-7% was obtained under the electric fields (E=128 V/mm and f=300 kHz) when the dilute bacteria solution (Escherichia coli: 9.3 x 10(3) cell/mL, 0.5 mS/m) flowed with a flow rate of 100 microL/min.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Escherichia coli/isolamento & purificação , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Compostos de Epóxi/química , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Polímeros/química , Porosidade
4.
Biosens Bioelectron ; 21(11): 2161-9, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290126

RESUMO

The polymerase chain reaction (PCR) is widely used to amplify a small amount of DNA in samples for genetic analysis. Rapid and accurate amplification is prerequisite for broad applications including molecular diagnostics of diseases, food safety, and biological warfare tests. We have developed a rapid real-time micro-scale chip-based PCR system, which consists of six individual thermal cycling modules capable of independent control of PCR protocols. The PCR volume is 1 microl and it takes less than 20 min to complete 40 thermal cycles. To test utility of a chip-based PCR system as a molecular diagnostic device, we have conducted the first large-scale clinical evaluation study. Three independent clinical evaluation studies (n = 563) for screening the hepatitis B virus (HBV) infection, the most popular social epidemic disease in Asia, showed an excellent sensitivity, e.g. 94%, and specificity, e.g. 93%, demonstrating micro-scale chip-based PCR can be applied in molecular diagnostics.


Assuntos
DNA Viral/análise , Vírus da Hepatite B/genética , Hepatite B/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Silício , Hepatite B/virologia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Lab Chip ; 5(8): 845-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16027935

RESUMO

We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Reação em Cadeia da Polimerase/métodos , DNA Viral/análise , Vírus da Hepatite B/genética , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...