Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2400460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654622

RESUMO

Lightweight structural materials are commonly used as effective fillers for advanced composites with high toughness. This study focused on enhancing the toughness of direct-spun carbon nanotube yarns (CNTYs) by controlling the micro-textural structure using a water-gap-based direct spinning. Drawing inspiration from the structural features of natural spider silk fibroin, characterized by an α-helix in the amorphous region and ß-sheet in the crystalline region, multiscale bundles within CNTYs are reorganized into a unique nano-coil-like structure. This nano-coiled structure facilitated the efficient dissipation of external mechanical loads through densification with the rearrangement of multiscale bundles, improving specific strength and strain. The resulting CNTYs exhibited exceptional mechanical properties with toughness reaching 250 J g-1, making them promising alternatives to commercially available fibers in lightweight, high-toughness applications. These findings highlight the significance of nano-coiling engineering for emulating bio-inspired micro-textural structures, achieving remarkable enhancement in the toughness of CNTYs.

2.
Nano Lett ; 23(8): 3128-3136, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36951295

RESUMO

In this study, a range of carbon nanotube yarn (CNTY) architectures was examined and controlled by chemical modification to gain a deeper understanding of CNTY load-bearing systems and produce lightweight and superstrong CNTYs. The architecture of CNTY, which has polymer layers surrounding a compact bundle without hampering the original state of the CNTs in the bundle, is a favorable design for further chemical cross-linking and for enhancing the load-transfer efficiency, as confirmed by in situ Raman spectroscopy under a stress load. The resulting CNTY exhibited excellent mechanical performance that exceeded the specific strength of the benchmark, high-performance fibers. This exceptional strength of the CNTY makes it a promising candidate for the cable of a space elevator traveling from the Earth to the International Space Station given its strength of 4.35 GPa/(g cm-3), which can withstand the self-weight of a 440 km cable.

3.
Adv Sci (Weinh) ; 10(2): e2204250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404109

RESUMO

Super strong fibers, such as carbon or aramid fibers, have long been used as effective fillers for advanced composites. In this study, the highest tensile strength of 5.5 N tex-1 for carbon nanotube yarns (CNTYs) is achieved by controlling the micro-textural structure through a facile and eco-friendly bundle engineering process in direct spinning without any post-treatment. Inspired by the strengthening mechanism of the hierarchical fibrillary structure of natural cellulose fiber, this study develops multiscale bundle structures in CNTYs whereby secondary bundles, ≈200 nm in thickness, evolve from the assembly of elementary bundles, 30 nm in thickness, without any damage, which is a basic load-bearing element in CNTY. The excellent mechanical performance of these CNTYs makes them promising substitutes for the benchmark, lightweight, and super strong commercial fibers used for energy-saving structural materials. These findings address how the tensile strength of CNTY can be improved without additional post-treatment in the spinning process if the development of the aforementioned secondary bundles and the corresponding orientations are properly engineered.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Resistência à Tração , Celulose
4.
ACS Appl Mater Interfaces ; 14(34): 39255-39264, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975758

RESUMO

Electromagnetic wave (EMW)-absorbing materials, manufactured with composites of magnetic particles, are essential for maintaining a high complex permeability and modulated permittivity for impedance matching. However, commonly available EMW-absorbing materials are unsatisfactory owing to their low complex permeability in the high-frequency band. Herein, we report a thin, flexible EMW-absorbing membrane comprising shape-modulated FeCo nanobelts/boron nitride nanoparticles, which enables enhanced complex permeability in the S, C, and X bands (2-12 GHz). The boron nitride nanoparticles that are introduced to the FeCo nanobelts demonstrate control of the complex permittivity, leading to an effective impedance matching close to 1, consequently resulting in a high reflection loss value of -42.2 dB at 12.0 GHz with only 1.6 mm thickness. In addition, the incorporation of boron nitride nanoparticles improves the thermal conductivity for the heat dissipation of the absorbed electromagnetic wave energy. Overall, the comprehensive study of nanomaterial preparation and shape modulation technologies can lead to the fabrication of an excellent EMW-absorbing flexible composite membrane.

6.
Adv Sci (Weinh) ; 8(22): e2102718, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34590441

RESUMO

It is of importance to explore a new carbon nanomaterial possessing vital functions to fulfill the high standards for practical achievement of the electromagnetic (EM) barrier for blocking EM waves and the electrochemical (EC) barrier as a functional separator for EC energy storage. Herein, facile synthesis of a new class of carbon nanostructures, which consist of interconnected N-doped graphitic carbon nanocubes partially embedded by nickel nanoparticles, is described. The hollow interior of graphitic nanocube induces internal reflection of EM waves and confines active materials of EC energy storage. Nitrogen functionalities implanted in graphitic structure enhance electrical conductivity as well as improve chemical interaction with active materials. Furthermore, nickel nanoparticles in graphitic nanocube function as an EM wave-absorbing material and an electrocatalyst for EC energy storage. Through comprehensive assessments, remarkable performances originating from distinctive nanostructures give new insights into structural design for the carbon nanostructure-based high-performance EM and EC barriers.

7.
ACS Nano ; 15(8): 13118-13128, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34279909

RESUMO

As power-conversion devices, flexible thermoelectrics that enable conformal contact with heat sources of arbitrary shape are attractive. However, the low performance of flexible thermoelectric materials, which does not exceed those of brittle inorganic counterparts, hampers their practical applications. Herein, we propose inorganic chalcogenide-nanostructured carbon nanotube (CNT) yarns with outstanding power factor at a low temperature using electrochemical deposition. The inorganic chalcogenide-nanostructured CNT yarns exhibit the power factors of 3425 and 2730 µW/(m·K2) at 298 K for the p- and n-type, respectively, which is higher than those of previously reported flexible TE materials. On the basis of excellent performance and geometry advantage of the nanostructured CNT yarn for modular design, all-CNT based thermoelectric generators have been easily fabricated, showing the maximum power densities of 24 and 380 mW/m2 at ΔT = 5 and 20 K, respectively. These results provide a promising strategy for the realization of high-performance flexible thermoelectric materials and devices for flexible/or wearable self-powering systems.

8.
Nanoscale ; 13(27): 12004-12016, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34212957

RESUMO

Herein, we introduce novel 1-dimensional nano-chained FeCo particles with unusually-high permeability prepared by a highly-productive thermal plasma synthesis and demonstrate an electromagnetic wave absorber with exceptionally low reflection loss in the high-frequency regime (1-26 GHz). During the thermal plasma synthesis, spherical FeCo nanoparticles are first formed through the nucleation and growth processes; then, the high temperature zone of the thermal plasma accelerates the diffusion of constituent elements, leading to surface-consolidation between the particles at the moment of collision, and 1-dimensional nano-chained particles are successfully fabricated without the need for templates or a complex directional growth process. Systematic control over the composition and magnetic properties of FexCo1-x nano-chained particles also has been accomplished by changing the mixing ratio of the Fe-to-Co precursors, i.e. from 7 : 3 to 3 : 7, leading to a remarkably high saturation magnetization of 151-227 emu g-1. In addition, a precisely-controlled and uniform surface SiO2 coating on the FeCo nano-chained particles was found to effectively modulate complex permittivity. Consequently, a composite electromagnetic wave absorber comprising Fe0.6Co0.4 nano-chained particles with 2.00 nm-thick SiO2 surface insulation exhibits dramatically intensified permeability, thereby improving electromagnetic absorption performance with the lowest reflection loss of -43.49 dB and -10 dB (90% absorbance) bandwidth of 9.28 GHz, with a minimum thickness of 0.85 mm.

9.
ACS Appl Mater Interfaces ; 13(5): 6257-6264, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33508940

RESUMO

With the continuous development of flexible and wearable thermoelectric generators (TEGs), high-performance materials and their integration into convenient wearable devices have to be considered. Herein, we have demonstrated highly aligned wet-spun carbon nanotube (CNT) fibers by optimizing the liquid crystalline (LC) phase via hydrochloric acid purification. The liquid crystalline phase facilitates better alignment of CNTs during fiber extrusion, resulting in the high power factor of 2619 µW m-1 K-2, which surpasses those of the dry-spun CNT yarns. A flexible all-carbon TEG was fabricated by stitching a single CNT fiber and doping selected segments into n-type by simple injection doping. The flexible TEG shows the maximum output power densities of 1.9 mW g-1 and 10.3 mW m-2 at ΔT = 30 K. Furthermore, the flexible TEG was developed into a prototype watch-strap TEG, demonstrating easy wearability and direct harvesting of body heat into electrical energy. Combining high-performance materials with scalable fabrication methods ensures the great potential for flexible/or wearable TEGs to be utilized as future power-conversion devices.

10.
Small ; 16(33): e2003104, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583953

RESUMO

Continuous efforts have been made to achieve nanostructured carbon materials with highly ordered graphitic structures using facile synthetic methods. 3D graphite nanoballs (GNBs) are synthesized by the low-temperature pyrolysis of a non-graphitizable precursor, tannic acid (TA). Abundant phenol groups on TA bind to Ni2+ to form metal-phenolic coordination, which renders each Ni cation to be atomically distributed by the TA ligands. Even at low temperatures (1000 °C), highly ordered graphitic structure is promoted by the distributed Ni nanoparticles that act as a graphitization catalyzer. The crystallinity of the GNB is fully corroborated by the intense 2D peak observed in Raman spectroscopy. In particular, the graphitic layers have orientations pointing toward multidirections, which are beneficial for the rapid transport of Li-ions into graphite grains. The resulting materials exhibit outstanding electrochemical performance (120 mAh g-1 at 5 C and 282 mAh g-1 at 0.5 C after 500 cycles) when evaluated as a fast-chargeable negative electrode for lithium ion batteries.

11.
ACS Appl Mater Interfaces ; 12(15): 17385-17395, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212667

RESUMO

Li-O2 batteries have attracted considerable attention for several decades due to their high theoretical energy density (>3400 Wh/kg). However, it has not been clearly demonstrated that their actual volumetric and gravimetric energy densities are higher than those of Li-ion batteries. In previous studies, a considerable quantity of electrolyte was usually employed in preparing Li-O2 cells. In general, the electrolyte was considerably heavier than the carbon materials in the cathode, rendering the practical energy density of the Li-O2 battery lower than that of the Li-ion battery. Therefore, air cathodes with significantly smaller electrolyte quantities need to be developed to achieve a high specific energy density in Li-O2 batteries. In this study, we propose a core-shell-structured cathode material with a gel-polymer electrolyte layer covering the carbon nanotubes (CNTs). The CNTs are synthesized using the floating catalyst chemical vapor deposition method. The polymeric layer corresponding to the shell is prepared by the layer-by-layer (LbL) coating method, utilizing Li-Nafion along with PDDA-Cl [poly(diallyldimethylammonium chloride)]. Several bilayers of Li-Nafion and PDDA, on the CNT surface, are successfully prepared and characterized via X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The porous structure of the CNTs is retained after the LbL process, as confirmed by the nitrogen adsorption-desorption profile and BJH pore-size distribution analysis. This porous structure can function as an oxygen channel for facilitating the transport of oxygen molecules for reacting with the Li ions on the cathode surface. These polymeric bilayers can provide an Li-ion pathway, after absorbing a small quantity of an ionic liquid electrolyte, 0.5 M LiTFSI EMI-TFSI [1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide]. Compared to a typical cathode, where only liquid electrolytes are employed, the total quantity of electrolyte in the cathode can be significantly reduced; thereby, the overall cell energy density can be increased. A Li-O2 battery with this core-shell-structured cathode exhibited a high energy density of approximately 390 Wh/kg, which was assessed by directly weighing all of the cell components together, including the gas diffusion layer, the interlayer [a separator containing a mixture of LiTFSI, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR-14), and PDDA-TFSI], the lithium anode, and the LbL-CNT cathode. The cycle life of the LbL-CNT-based cathode was found to be 31 cycles at a limited capacity of 500 mAh/gcarbon. Although this is not an excellent performance, it is almost 2 times better than that of a CNT cathode without a polymer coating.

12.
Nat Commun ; 10(1): 2962, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273205

RESUMO

Developing methods to assemble nanomaterials into macroscopic scaffolds is of critical significance at the current stage of nanotechnology. However, the complications of the fabrication methods impede the widespread usages of newly developed materials even with the superior properties in many cases. Here, we demonstrate the feasibility of a highly-efficient and potentially-continuous fiber-spinning method to produce high-performance carbon nanotube (CNT) fiber (CNTF). The processing time is <1 min from synthesis of CNTs to fabrication of highly densified and aligned CNTFs. CNTFs that are fabricated by the developed spinning method are ultra-lightweight, strong (specific tensile strength = 4.08 ± 0.25 Ntex-1), stiff (specific tensile modulus = 187.5 ± 7.4 Ntex-1), electrically conductive (2,270 S m2kg-1), and highly flexible (knot efficiency = 48 ± 15%), so they are suitable for various high-value fabric-based applications.

13.
Nanoscale Adv ; 1(12): 4697-4703, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133104

RESUMO

Ammonia borane (AB, NH3BH3) is a highly promising hydrogen storage material, but its high dehydrogenation temperature hinders its wide use in practice. The infiltration of AB into the pores of porous materials can lower the dehydrogenation temperature by what is known as the nanoconfinement effect. Nonetheless, it is unclear as to whether this phenomenon stems from a catalytic effect or the nanosize effect. In this work, carbon nanomaterials with a uniform pore size and with inertness to AB were chosen as nanoscaffolds without catalytic sites to control the particle size of AB. It is proved experimentally that the dehydrogenation temperature of AB is inversely proportional to the reciprocal of the particle size, which means that the nanoconfinement effect can be caused solely by the nanosize effect without a catalytic effect.

14.
ACS Nano ; 12(11): 11106-11119, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30380831

RESUMO

N-doped hierarchical porous carbon with uniaxially packed carbon nanotubes (CNTs) was prepared by copolymer single-nozzle electrospinning, carbonization, and KOH activation. Densely and uniaxially aligned CNTs improve the electrical conductivity and act as a structural scaffold, enhancing the electrochemical performance of the anode. A partially graphitized N-doped carbon shell, which has a rapid ion accessible pore network and abundant redox sites, was designed to expand the redox sites from the surface of the material to the whole material, including the inner part. As an anode, this material exhibited a superior reversible capacity of 1814.3 mA h g-1 at 50 mA g-1 and of 850.1 mA h g-1 at 1000 mA g-1. Furthermore, the reversible capacity decreased by only 36% after 400 cycles and showed superior rate capability to that of the same material without CNTs, indicating that the CNT acted successfully as a structural scaffold and enhanced the electrical conductivity. This study not only allowed the rational design of the ideal structure of CNT-based carbonaceous anode material, which has both a rapid ion accessible structure and fast electron-transfer path, but also shed light on a potential strategy by which to use CNTs to modify the nitrogen bonding configuration in N-doped carbon for better electrochemical performance.

15.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29068560

RESUMO

Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m-2 , top: ≈30 000 cd m-2 , total: ≈73 000 cd m-2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in.-1 ) shows the potential of the full-color transparent display.

16.
ACS Nano ; 11(8): 7608-7614, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28700205

RESUMO

As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl3, respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 µW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.

17.
Chem Commun (Camb) ; 53(49): 6573-6576, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28574561

RESUMO

The gas permeability of reduced graphene oxide (rGO) films is influenced by controlling the lateral size and void generation. Low gas permeability was achieved by the controlled synthesis of parent graphene oxide (GO). The organic device lifetime using rGO-coated barriers was prolonged by 65.9 times when compared to bare samples.

18.
ACS Appl Mater Interfaces ; 9(20): 17552-17564, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28460171

RESUMO

A facile purification method for oxidized carbon nanotubes (CNTs) is developed to preserve acidic carbon compounds (ACCs) for achieving high-quality dispersion of CNTs. The remaining ACCs, which originated from the surface destruction of CNTs during the oxidation process, are considered to play a crucial role in the dispersion of CNTs in water and various polar protic solvents. To elucidate the concrete role of ACCs, a direct titration method is applied to quantitatively investigate the degree of ionization of both CNTs and ACCs in their aqueous dispersions. While ACCs with strong carboxylic groups (pKa of around 2.9) are easily removed by the neutral or base washing of oxidized CNTs, which is common in the purification process, ACC-selective purification using acid washing preserves the ACCs attached to CNTs, thereby effectively stabilizing CNT dispersions in aqueous solutions. Additionally, the Hansen solubility parameters of ACC-preserved and ACC-removed CNTs were determined by the inverse gas chromatography method to estimate their miscibility in various solvents. The preserved ACCs significantly influenced the dispersibility of CNTs in polar protic solvents, which may widen the possible application of CNTs. Specifically, the ACC-preserved high-quality CNT dispersion produces high-performance CNT buckypaper with densely packed nanostructures. The Young's modulus and tensile strength of these buckypapers reach up to 12.0 and 91.0 MPa, respectively, which exceed those of ACC-removed CNTs in previous reports.

19.
Nanoscale ; 9(4): 1699-1708, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28090610

RESUMO

We prepared liquid phase exfoliated edge-selectively oxidized graphene (LPEOG) with a high concentration in water (∼14.7 mg ml-1) and a high ratio of a single layer (70%). The edge of graphite was selectively oxidized by step II oxidation of the modified Hummers method, and we subsequently exfoliated the edge-selectively oxidized graphite (EOG) into LPEOG. The edge selective oxidation of the LPEOG was confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta-potentiometry, Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The highly concentrated LPEOG ink can be used in solution processing such as simple drawing or spin casting. Reduced LPEOG showed a higher conductivity (120 000 S m-1) than that of reduced graphene oxide (68 800 S m-1) despite the small lateral size. A transparent conducting film prepared from the LPEOG ink showed a lower surface resistance (∼2.97 kΩ sq-1) at a higher transmittance (>83.0 %T) compared to those of the graphene oxide based film. These results indicate that preservation of π-conjugation of the basal plane of graphene is critical for electrical performance of graphene. Our method facilitates solution processing of graphene for a wide range of applications.

20.
ChemSusChem ; 10(8): 1675-1682, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28058792

RESUMO

Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Metais/química , Nanocompostos/química , Fenóis/química , Eletroquímica , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...