Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914408

RESUMO

Animals exhibit context-dependent behavioral decisions that are mediated by specific motor circuits. In social species these decisions are often influenced by social status. Although social status-dependent neural plasticity of motor circuits has been investigated in vertebrates, little is known of how cellular plasticity translates into differences in motor activity. Here, we used zebrafish (Danio rerio) as a model organism to examine how social dominance influences the activation of swimming and the Mauthner-mediated startle escape behaviors. We show that the status-dependent shift in behavior patterns whereby dominants increase swimming and reduce sensitivity of startle escape while subordinates reduce their swimming and increase startle sensitivity is regulated by the synergistic interactions of dopaminergic, glycinergic, and GABAergic inputs to shift the balance of activation of the underlying motor circuits. This shift is driven by socially induced differences in expression of dopaminergic receptor type 1b (Drd1b) on glycinergic neurons and dopamine (DA) reuptake transporter (DAT). Second, we show that GABAergic input onto glycinergic neurons is strengthened in subordinates compared with dominants. Complementary neurocomputational modeling of the empirical results show that drd1b functions as molecular regulator to facilitate the shift between excitatory and inhibitory pathways. The results illustrate how reconfiguration in network dynamics serves as an adaptive strategy to cope with changes in social environment and are likely conserved and applicable to other social species.


Assuntos
Neurônios , Peixe-Zebra , Animais , Neurônios/fisiologia , Predomínio Social
2.
Chaos ; 31(11): 113121, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34881610

RESUMO

The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson's disease. The ability of STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta rhythms observed in Parkinson's disease. In this study, we developed a conductance-based single compartment model of an STN neuron, which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-inhibitory rebound bursts. This study focused on the role of three currents in rhythm generation: T-type calcium (CaT) current, L-type calcium (CaL) current, and hyperpolarization-activated cyclic nucleotide-gated (HCN) current. To investigate the effects of these currents in rhythm generation, we performed a bifurcation analysis using slow variables in these currents. Bifurcation analysis showed that the HCN current promotes single-spike activity patterns rather than bursting in agreement with experimental results. It also showed that the CaT current is necessary for characteristic bursting activity patterns. In particular, the CaT current enables STN neurons to generate these activity patterns under hyperpolarizing stimuli. The CaL current enriches and reinforces these characteristic activity patterns. In hyperpolarization-induced bursts or post-inhibitory rebound bursts, the CaL current allows STN neurons to generate long bursting patterns. Thus, the bifurcation analysis explained the synergistic interaction of the CaT and CaL currents, which enables STN neurons to respond to hyperpolarizing stimuli in a salient way. The results of this study implicate the importance of CaT and CaL currents in the pathophysiology of the basal ganglia in Parkinson's disease.


Assuntos
Núcleo Subtalâmico , Gânglios da Base , Ritmo beta , Modelos Teóricos , Neurônios
3.
Front Behav Neurosci ; 15: 668589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045945

RESUMO

Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29459823

RESUMO

While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.


Assuntos
Dominação-Subordinação , Reação de Fuga/fisiologia , Habituação Psicofisiológica/fisiologia , Reflexo de Sobressalto/fisiologia , Rombencéfalo/fisiologia , Peixe-Zebra/fisiologia , Adaptação Psicológica/fisiologia , Animais , Percepção Auditiva/fisiologia , Simulação por Computador , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Neurônios/fisiologia
5.
J Neurosci ; 37(8): 2137-2148, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28093472

RESUMO

In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability.


Assuntos
Tomada de Decisões/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Predomínio Social , Estimulação Acústica , Potenciais de Ação , Análise de Variância , Animais , Vias Auditivas/fisiologia , Simulação por Computador , Reação de Fuga/fisiologia , Masculino , Tempo de Reação/fisiologia , Reflexo de Sobressalto/fisiologia , Natação , Peixe-Zebra
6.
PLoS One ; 9(10): e109894, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302708

RESUMO

Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders.


Assuntos
Expiração/fisiologia , Hipercapnia/fisiopatologia , Pulmão/fisiopatologia , Sistema Respiratório/fisiopatologia , Retroalimentação Fisiológica/fisiologia , Humanos , Modelos Biológicos , Neurônios/fisiologia , Troca Gasosa Pulmonar/fisiologia , Mecânica Respiratória/fisiologia
7.
Front Comput Neurosci ; 7: 124, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24046745

RESUMO

Basal ganglia dysfunction has being implied in both Parkinson's disease and dystonia. While these disorders probably involve different cellular and circuit pathologies within and beyond basal ganglia, there may be some shared neurophysiological pathways. For example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic treatment of both disorders. Both conditions are marked by alterations of rhythmicity of neural activity throughout basal ganglia-thalamocortical circuits. Increased synchronized oscillatory activity in beta band is characteristic of Parkinson's disease, while different frequency bands, theta and alpha, are involved in dystonia. We compare the effect of the activity of GPi, the output nuclei of the basal ganglia, on information processing in the downstream neural circuits of thalamus in Parkinson's disease and dystonia. We use a data-driven computational approach, a computational model of the thalamocortical (TC) cell modulated by experimentally recorded data, to study the differences and similarities of thalamic dynamics in dystonia and Parkinson's disease. Our analysis shows no substantial differences in TC relay between the two conditions. Our results suggest that, similar to Parkinson's disease, a disruption of thalamic processing could also be involved in dystonia. Moreover, the degree to which TC relay fidelity is impaired is approximately the same in both conditions. While Parkinson's disease and dystonia may have different pathologies and differ in the oscillatory content of neural discharge, our results suggest that the effect of patterning of pallidal discharge is similar in both conditions. Furthermore, these results suggest that the mechanisms of GPi DBS in dystonia may involve improvement of TC relay fidelity.

8.
PLoS One ; 8(3): e58264, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469272

RESUMO

Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.


Assuntos
Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurorretroalimentação/fisiologia , Neurônios/fisiologia , Humanos , Hipocinesia/fisiopatologia , Hipocinesia/terapia , Masculino , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Análise de Componente Principal , Fatores de Tempo
9.
J Comput Neurosci ; 34(2): 345-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23053862

RESUMO

Activity of neurons in the pre-Bötzinger complex (pre-BötC) within the mammalian brainstem drives the inspiratory phase of the respiratory rhythm. Experimental results have suggested that multiple bursting mechanisms based on a calcium-activated nonspecific cationic (CAN) current, a persistent sodium (NaP) current, and calcium dynamics may be incorporated within the pre-BötC. Previous modeling works have incorporated representations of some or all of these mechanisms. In this study, we consider a single-compartment model of a pre-BötC inspiratory neuron that encompasses particular aspects of all of these features. We present a novel mathematical analysis of the interaction of the corresponding rhythmic mechanisms arising in the model, including square-wave bursting and autonomous calcium oscillations, which requires treatment of a system of differential equations incorporating three slow variables.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Centro Respiratório/citologia , Animais , Humanos , Matemática
10.
Nonlinear Dyn ; 68(3): 329-346, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22582010

RESUMO

Motor symptoms of Parkinson's disease are related to the excessive synchronized oscillatory activity in the beta frequency band (around 20Hz) in the basal ganglia and other parts of the brain. This review explores the dynamics and potential mechanisms of these oscillations employing ideas and methods from nonlinear dynamics. We present extensive experimental documentation of the relevance of synchronized oscillations to motor behavior in Parkinson's disease, and we discuss the intermittent character of this synchronization. The reader is introduced to novel time-series analysis techniques aimed at the detection of the fine temporal structure of intermittent phase locking observed in the brains of parkinsonian patients. Modeling studies of brain networks are reviewed, which may describe the observed intermittent synchrony, and we discuss what these studies reveal about brain dynamics in Parkinson's disease. The parkinsonian brain appears to exist on the boundary between phase-locked and nonsynchronous dynamics. Such a situation may be beneficial in the healthy state, as it may allow for easy formation and dissociation of transient patterns of synchronous activity which are required for normal motor behavior. Dopaminergic degeneration in Parkinson's disease may shift the brain networks closer to this boundary, which would still permit some motor behavior while accounting for the associated motor deficits. Understanding the mechanisms of the intermittent synchrony in Parkinson's disease is also important for biomedical engineering since efficient control strategies for suppression of pathological synchrony through deep brain stimulation require knowledge of the dynamics of the processes subjected to control.

11.
PLoS One ; 7(12): e51530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284707

RESUMO

Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson's disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson's disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson's disease.


Assuntos
Gânglios da Base/patologia , Dopamina/farmacologia , Globo Pálido/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Núcleo Subtalâmico/patologia , Potenciais de Ação , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Capacitância Elétrica , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Humanos , Modelos Neurológicos , Modelos Teóricos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo
12.
Chaos ; 21(3): 033125, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974660

RESUMO

Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network. Here, we explore one potential mechanism to explain the intermittent phase-locking in a network. We simplify the network to obtain a model of two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singular perturbation methods for dynamical systems to reduce the full model to a simpler set of equations. Mathematical analysis was completed using three slow variables with two different time scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially depends on the geometry of the slow phase plane and the interplay between slow variables as well as the strength of synapses. Two slow variables are responsible for the generation of activity patterns with overlapped spiking, and the other slower variable enhances the robustness of an irregular and intermittent activity pattern. While the analyzed network and the explored mechanism of intermittent synchrony appear to be quite generic, the results of this analysis can be used to trace particular values of biophysical parameters (synaptic strength and parameters of calcium dynamics), which are known to be impacted in Parkinson's disease.


Assuntos
Potenciais de Ação/fisiologia , Sincronização Cortical/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Globo Pálido/fisiologia , Humanos , Modelos Neurológicos , Núcleo Subtalâmico/fisiologia , Sinapses/fisiologia
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016201, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867267

RESUMO

This study explores a method to characterize the temporal structure of intermittent phase locking in oscillatory systems. When an oscillatory system is in a weakly synchronized regime away from a synchronization threshold, it spends most of the time in parts of its phase space away from the synchronization state. Therefore characteristics of dynamics near this state (such as its stability properties and Lyapunov exponents or distributions of the durations of synchronized episodes) do not describe the system's dynamics for most of the time. We consider an approach to characterize the system dynamics in this case by exploring the relationship between the phases on each cycle of oscillations. If some overall level of phase locking is present, one can quantify when and for how long phase locking is lost, and how the system returns back to the phase-locked state. We consider several examples to illustrate this approach: coupled skewed tent maps, the stability of which can be evaluated analytically; coupled Rössler and Lorenz oscillators, undergoing through different intermittency types on the way to phase synchronization; and a more complex example of coupled neurons. We show that the obtained measures can describe the differences in the dynamics and temporal structure of synchronization and desynchronization events for the systems with a similar overall level of phase locking and similar stability of the synchronized state.


Assuntos
Modelos Teóricos , Neurônios/citologia , Fatores de Tempo
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 042901, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599224

RESUMO

Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from Parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies.


Assuntos
Potenciais de Ação , Encéfalo/fisiopatologia , Sincronização Cortical , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Neurônios , Transmissão Sináptica , Animais , Relógios Biológicos , Simulação por Computador , Humanos
15.
Chaos ; 20(2): 023122, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590318

RESUMO

Excitatory-inhibitory networks arise in many regions throughout the central nervous system and display complex spatiotemporal firing patterns. These neuronal activity patterns (of individual neurons and/or the whole network) are closely related to the functional status of the system and differ between normal and pathological states. For example, neurons within the basal ganglia, a group of subcortical nuclei that are responsible for the generation of movement, display a variety of dynamic behaviors such as correlated oscillatory activity and irregular, uncorrelated spiking. Neither the origins of these firing patterns nor the mechanisms that underlie the patterns are well understood. We consider a biophysical model of an excitatory-inhibitory network in the basal ganglia and explore how specific biophysical properties of the network contribute to the generation of irregular spiking. We use geometric dynamical systems and singular perturbation methods to systematically reduce the model to a simpler set of equations, which is suitable for analysis. The results specify the dependence on the strengths of synaptic connections and the intrinsic firing properties of the cells in the irregular regime when applied to the subthalamopallidal network of the basal ganglia.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Gânglios da Base/fisiologia , Fenômenos Biofísicos , Humanos , Neurônios/fisiologia , Dinâmica não Linear , Sinapses/fisiologia
16.
J Neurophysiol ; 103(5): 2707-16, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181734

RESUMO

Synchronous oscillatory dynamics in the beta frequency band is a characteristic feature of neuronal activity of basal ganglia in Parkinson's disease and is hypothesized to be related to the disease's hypokinetic symptoms. This study explores the temporal structure of this synchronization during episodes of oscillatory beta-band activity. Phase synchronization (phase locking) between extracellular units and local field potentials (LFPs) from the subthalamic nucleus (STN) of parkinsonian patients is analyzed here at a high temporal resolution. We use methods of nonlinear dynamics theory to construct first-return maps for the phases of oscillations and quantify their dynamics. Synchronous episodes are interrupted by less synchronous episodes in an irregular yet structured manner. We estimate probabilities for different kinds of these "desynchronization events." There is a dominance of relatively frequent yet very brief desynchronization events with the most likely desynchronization lasting for about one cycle of oscillations. The chances of longer desynchronization events decrease with their duration. The observed synchronization may primarily reflect the relationship between synaptic input to STN and somatic/axonal output from STN at rest. The intermittent, transient character of synchrony even on very short time scales may reflect the possibility for the basal ganglia to carry out some informational function even in the parkinsonian state. The dominance of short desynchronization events suggests that even though the synchronization in parkinsonian basal ganglia is fragile enough to be frequently destabilized, it has the ability to reestablish itself very quickly.


Assuntos
Ritmo beta , Sincronização Cortical , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Potenciais de Ação , Feminino , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Modelos Neurológicos , Dinâmica não Linear , Periodicidade , Probabilidade , Processamento de Sinais Assistido por Computador , Fatores de Tempo
17.
J Comput Neurosci ; 23(2): 217-35, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17624604

RESUMO

Changes in firing patterns are an important hallmark of the functional status of neuronal networks. We apply dynamical systems methods to understand transitions between irregular and rhythmic firing in an excitatory-inhibitory neuronal network model. Using the geometric theory of singular perturbations, we systematically reduce the full model to a simpler set of equations, one that can be studied analytically. The analytic tools are used to understand how an excitatory-inhibitory network with a fixed architecture can generate both activity patterns for possibly different values of the intrinsic and synaptic parameters. These results are applied to a recently developed model for the subthalamopallidal network of the basal ganglia. The results suggest that an increase in correlated activity, corresponding to a pathological state, may be due to an increased level of inhibition from the striatum to the inhibitory GPe cells along with an increased ability of the excitatory STN neurons to generate rebound bursts.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Periodicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...