Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 20(7): e13418, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125994

RESUMO

There is evidence emerging that exposure to cold temperatures enhances alternative activation of macrophages in white adipose tissue (WAT), which promotes adipocyte beiging and adaptive thermogenesis. Although we recently reported that NAD+ -dependent deacetylase sirtuin 6 (Sirt6) drives alternatively activated (M2) macrophage polarization, the role of myeloid Sirt6 in adaptive thermogenesis had remained elusive. In this study, we demonstrate that myeloid Sirt6 deficiency impaired both thermogenic responses and M2 macrophage infiltration in subcutaneous WAT (scWAT) during cold exposure. Moreover, the infiltration of Siglec-F-positive eosinophils in scWAT and Th2 cytokines levels was reduced in myeloid Sirt6 knockout mice. An ex vivo bone marrow-derived cell culture experiment indicated that Sirt6 was required for eosinophil differentiation independent of its deacetylase activity. Data from our in vitro experiments show that Sirt6 acted as a transcriptional cofactor of GATA-1, independent of its catalytic function as a deacetylase or ADP-ribosyltransferase. Specifically, Sirt6 physically interacted with GATA-1, and enhanced GATA-1's acetylation and transcriptional activity by facilitating its cooperation with p300. Overall, our results suggest that myeloid Sirt6 plays an important role in eosinophil differentiation and fat beiging/adaptive thermogenesis, which is at least in part due to its ability to bind GATA-1 and stimulate its transcriptional activity.


Assuntos
Eosinófilos/metabolismo , Fator de Transcrição GATA1/metabolismo , Sirtuínas/metabolismo , Fator 1 Ativador da Transcrição/metabolismo , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos
2.
Exp Mol Med ; 51(9): 1-11, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541078

RESUMO

The active spliced form of X-box-binding protein 1 (XBP1s) is a key modulator of ER stress, but the functional role of its post-translational modification remains unclear. Here, we demonstrate that XBP1s is a deacetylation target of Sirt6 and that its deacetylation protects against ER stress-induced hepatic steatosis. Specifically, the abundance of acetylated XBP1s and concordant hepatic steatosis were increased in hepatocyte-specific Sirt6 knockout and obese mice but were decreased by genetic overexpression and pharmacological activation of Sirt6. Mechanistically, we identified that Sirt6 deacetylated a transactivation domain of XBP1s at Lys257 and Lys297 and promoted XBP1s protein degradation through the ubiquitin-proteasome system. Overexpression of XBP1s, but not its deacetylation mutant 2KR (K257/297R), in mice increased lipid accumulation in the liver. Importantly, in liver tissues obtained from patients with nonalcoholic fatty liver disease (NAFLD), the extent of XBP1s acetylation correlated positively with the NAFLD activity score but negatively with the Sirt6 level. Collectively, we present direct evidence supporting the importance of XBP1 acetylation in ER stress-induced hepatic steatosis.


Assuntos
Fígado Gorduroso/genética , Hepatopatia Gordurosa não Alcoólica/genética , Sirtuínas/genética , Proteína 1 de Ligação a X-Box/genética , Acetilação , Animais , Estresse do Retículo Endoplasmático/genética , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout/genética , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/patologia , Processamento de Proteína Pós-Traducional/genética , Proteólise
3.
Plant Pathol J ; 33(5): 499-507, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29018313

RESUMO

In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of 31.3 µg/ml and 100% at a concentration of 250 µg/ml. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...