Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Hered ; 86(1-4): 28-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706366

RESUMO

Multiple familial diseases in a single patient often present with overlapping symptomatology that confers difficulty in delineating a clinical diagnosis. Pedigree analysis has been a long-standing practice in the field of medical genetics to discover familial diseases. In recent years, whole exome sequencing (WES) has proven to be a useful tool for aiding physicians in diagnosing and understanding disease etiology. This report shows that pedigree analysis and WES are co-dependent processes in establishing diagnoses in a family with 4 different genetic disorders: Birt-Hogg-Dubé Syndrome, RRM2B-related mitochondrial disease, CDC73-related primary hyperparathyroidism, and familial prostate cancer.


Assuntos
Síndrome de Birt-Hogg-Dubé , Hiperparatireoidismo Primário , Síndrome de Birt-Hogg-Dubé/genética , Exoma/genética , Humanos , Masculino , Linhagem , Sequenciamento do Exoma
2.
Neuropharmacology ; 77: 28-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24035918

RESUMO

Behavioral sensitization to cocaine is associated with increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc). This upregulation is withdrawal-dependent, as it is not detected on withdrawal day (WD) 1, but is observed on WD7-21. Its underlying mechanisms have not been clearly established. Nitric oxide (NO) regulates AMPAR trafficking in the brain by S-nitrosylation of the AMPAR auxiliary subunit, stargazin, leading to increased AMPAR surface expression. Our goal was to determine if stargazin S-nitrosylation contributes to AMPAR upregulation during sensitization. First, we measured stargazin S-nitrosylation in NAc core and shell subregions on WD14 after 8 daily injections of saline or 15 mg/kg cocaine. Stargazin S-nitrosylation was markedly increased in NAc shell but not core. To determine if this is associated with AMPAR upregulation, rats received 8 cocaine or saline injections followed by twice-daily treatments with vehicle or the nitric oxide synthase inhibitor l-NAME (50 mg/kg) on WD1-6, the time when AMPAR upregulation is developing in cocaine-exposed rats. Cocaine/vehicle rats showed elevated stargazin and GluA1 surface expression on WD7 compared to saline/vehicle rats; the GluA1 increase was more robust in core, while stargazin increased more robustly in shell. These effects of cocaine were attenuated in shell but not core when cocaine injections were followed by l-NAME treatment on WD1-6. Together, these results indicate that elevated S-nitrosylation of stargazin contributes to AMPAR upregulation during sensitization selectively in the NAc shell. It is possible that AMPAR upregulation in core involves a different TARP, γ4, which also upregulates in the NAc of sensitized rats.


Assuntos
Canais de Cálcio/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/genética , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
3.
PLoS One ; 6(11): e27187, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073284

RESUMO

OBJECTIVE: There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD. METHODS: The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP. RESULTS: We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP. INTERPRETATION: Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.


Assuntos
Gânglios da Base/efeitos dos fármacos , Corpo Estriado/enzimologia , GMP Cíclico/antagonistas & inibidores , Guanilato Ciclase/antagonistas & inibidores , Transtornos Parkinsonianos/fisiopatologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Gânglios da Base/enzimologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiopatologia , GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidiazóis/farmacologia , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/metabolismo , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel
4.
J Neurochem ; 111(6): 1457-65, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19799710

RESUMO

Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane-anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF-81297 was blocked following intrastriatal infusion of: (i) the D1/5 receptor antagonist SCH-23390, (ii) the nNOS inhibitor 7-nitroindazole, (iii) the non-specific ionotropic glutamate receptor antagonist kynurenic acid, and (iv) the selective NMDA receptor antagonist 3-phosphonopropyl-piperazine-2-carboxylic acid. Glycine co-perfusion did not affect SKF-81297-induced NO efflux. Furthermore, intrastriatal infusion of SKF-81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF-81297 were both blocked by intrastriatal infusion of SCH-23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA-glutamate interactions play a critical role in stimulating striatal nNOS activity.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Vias Aferentes/fisiologia , Animais , Córtex Cerebral/fisiologia , Corpo Estriado/efeitos dos fármacos , Dopaminérgicos/farmacologia , Interações Medicamentosas , Estimulação Elétrica/métodos , Eletroquímica/métodos , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Masculino , Microdiálise/métodos , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Sprague-Dawley
5.
J Neurochem ; 103(3): 1145-56, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17666041

RESUMO

Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.


Assuntos
Corpo Estriado/metabolismo , Lobo Frontal/metabolismo , Neurônios Aferentes/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/biossíntese , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Corpo Estriado/anatomia & histologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/metabolismo , Lobo Frontal/anatomia & histologia , Ácido Glutâmico/metabolismo , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 289(2): R353-R358, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15817841

RESUMO

Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Hormônios Peptídicos/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Animais , Metabolismo dos Carboidratos , Esquema de Medicação , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Grelina , Injeções , Masculino , Neuropeptídeo Y/administração & dosagem , Neuropeptídeo Y/farmacologia , Oxirredução/efeitos dos fármacos , Hormônios Peptídicos/administração & dosagem , Hormônios Peptídicos/farmacologia , Fotoperíodo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...