Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 178(18): 3813-3828, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33974269

RESUMO

BACKGROUND AND PURPOSE: The G-protein-coupled receptor GPR75 (Gq) and its ligand, the cytochrome P450-derived vasoactive eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), are involved in the activation of pro-inflammatory and hypertensive signalling cascades contributing to diabetes, obesity, vascular dysfunction/remodelling, hypertension and cardiovascular disease. Little is known as to how, where and with what affinity 20-HETE interacts with GPR75. EXPERIMENTAL APPROACH: To better understand the pairing of 20-HETE and its receptor (GPR75), we used surface plasmon resonance (SPR) to determine binding affinity/kinetics. The PRESTO-Tango receptor-ome methodology for GPR75 overexpression was coupled with FLIPR Calcium 6 assays, homogeneous time-resolved fluorescence (HTRF) IP-1 and ß-arrestin recruitment assays to determine receptor activation and downstream signalling events. KEY RESULTS: SPR confirmed 20-HETE binding to GPR75 with an estimated KD of 1.56 × 10-10  M. In GPR75-transfected HTLA cells, 20-HETE stimulated intracellular Ca2+ levels, IP-1 accumulation and ß-arrestin recruitment, all of which were negated by known 20-HETE functional antagonists. Computational modelling of the putative ligand-binding pocket and mutation of Thr212 within the putative 20-HETE binding site abolished 20-HETE's ability to stimulate GPR75 activation. Knockdown of GPR75 in human endothelial cells nullified 20-HETE-stimulated intracellular Ca2+ . The chemokine CCL5, a suggested GPR75 ligand, binds to GPR75 (KD of 5.85 × 10-10  M) yet fails to activate GPR75; however, it inhibited 20-HETE's ability to activate GPR75 signalling. CONCLUSIONS AND IMPLICATIONS: We have identified 20-HETE as a high-affinity ligand for GPR75 and CCL5 as a low-affinity negative regulator of GPR75, providing additional evidence for the deorphanization of GPR75 as a 20-HETE receptor.


Assuntos
Quimiocina CCL5 , Células Endoteliais , Humanos , Ácidos Hidroxieicosatetraenoicos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
2.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
3.
Science ; 370(6521): 1186-1191, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273096

RESUMO

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)-mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.


Assuntos
Transdiferenciação Celular , Células Endoteliais/citologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/fisiologia , Polissacarídeos/biossíntese , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Células Endoteliais/metabolismo , Genes Reporter , Glicômica , Glicosilação , Células-Tronco Hematopoéticas/metabolismo , Manosiltransferases/metabolismo , MicroRNAs/genética , Sialiltransferases/metabolismo , Peixe-Zebra , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
Proc Natl Acad Sci U S A ; 117(34): 20794-20802, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817466

RESUMO

Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Transferases/química , Transferases/metabolismo , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão/métodos , Cristalografia por Raios X , Glicosilação , Humanos , Mutação , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/genética , Relação Estrutura-Atividade , Transferases/genética
5.
Proc Natl Acad Sci U S A ; 117(17): 9497-9507, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32300005

RESUMO

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Disponibilidade Biológica , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , para-Aminobenzoatos/farmacologia
6.
J Biol Chem ; 292(42): 17351-17361, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842490

RESUMO

cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cis-PT is the first enzyme committed to the synthesis of dolichyl phosphate, an obligate lipid carrier in protein glycosylation reactions. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase, generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently, we discovered that unlike undecaprenyl diphosphate synthase, mammalian cis-PT is a heteromer consisting of NgBR (Nus1) and hCIT (dehydrodolichol diphosphate synthase) subunits, and this composition has been confirmed in plants and fungal cis-PTs. Here, we establish the first purification system for heteromeric cis-PT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RXG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla. In summary, our findings show that eukaryotic cis-PT is composed of the NgBR and hCIT subunits. The strong conservation of the RXG motif among NgBR orthologs indicates that this subunit is critical for the synthesis of polyprenol diphosphates and cellular function.


Assuntos
Alquil e Aril Transferases/química , Dimetilaliltranstransferase/química , Receptores de Superfície Celular/química , Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transferases/genética , Transferases/metabolismo
7.
Nat Commun ; 7: 13516, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869117

RESUMO

In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.


Assuntos
Receptores de Activinas Tipo II/metabolismo , LDL-Colesterol/metabolismo , Células Endoteliais/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Activinas Tipo II/genética , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Transporte Biológico , Células Cultivadas , LDL-Colesterol/genética , Clonagem Molecular , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Interferência de RNA
8.
J Biol Chem ; 291(35): 18582-90, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402831

RESUMO

cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.


Assuntos
Dimetilaliltranstransferase , Hemiterpenos , Compostos Organofosforados , Proteínas de Plantas , Biossíntese de Proteínas , Borracha/metabolismo , Animais , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Hemiterpenos/genética , Hemiterpenos/metabolismo , Humanos , Compostos Organofosforados/metabolismo , Proteínas de Plantas/metabolismo
9.
EMBO Rep ; 17(2): 167-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755743

RESUMO

NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.


Assuntos
Endotélio Vascular/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Glicosilação , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de Superfície Celular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Sci Signal ; 8(390): ra81, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26286023

RESUMO

Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas/metabolismo , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Cromatografia Líquida , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática , Células HEK293 , Humanos , Immunoblotting , Óxido Nítrico/metabolismo , Fosforilação , Ligação Proteica , Proteínas/genética , Interferência de RNA , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
Cell Metab ; 20(3): 448-57, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25066056

RESUMO

Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.


Assuntos
Doenças Metabólicas/genética , Receptores de Superfície Celular/genética , Transferases/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Dolicóis/metabolismo , Evolução Molecular , Feminino , Técnicas de Inativação de Genes , Glicosilação , Humanos , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases/química , Transferases/metabolismo
12.
Development ; 141(7): 1465-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598168

RESUMO

Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of ß1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of ß1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.


Assuntos
Vasos Sanguíneos/embriologia , Dinamina II/fisiologia , Endocitose/genética , Integrinas/metabolismo , Neovascularização Fisiológica/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/crescimento & desenvolvimento , Células Cultivadas , Dinamina II/genética , Embrião de Mamíferos , Feminino , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
13.
J Biol Chem ; 289(13): 9380-95, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24558039

RESUMO

Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca(2+) levels via SOCE and therefor are less susceptible to Ca(2+) overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca(2+) homeostasis.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Apoptose , Linhagem Celular , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Inativação de Genes , Homeostase , Camundongos , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Receptor Nogo 1 , Proteína ORAI1 , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Molécula 1 de Interação Estromal
14.
EMBO J ; 30(12): 2490-500, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21572394

RESUMO

Dolichol monophosphate (Dol-P) functions as an obligate glycosyl carrier lipid in protein glycosylation reactions. Dol-P is synthesized by the successive condensation of isopentenyl diphosphate (IPP), with farnesyl diphosphate catalysed by a cis-isoprenyltransferase (cis-IPTase) activity. Despite the recognition of cis-IPTase activity 40 years ago and the molecular cloning of the human cDNA encoding the mammalian enzyme, the molecular machinery responsible for regulating this activity remains incompletely understood. Here, we identify Nogo-B receptor (NgBR) as an essential component of the Dol-P biosynthetic machinery. Loss of NgBR results in a robust deficit in cis-IPTase activity and Dol-P production, leading to diminished levels of dolichol-linked oligosaccharides and a broad reduction in protein N-glycosylation. NgBR interacts with the previously identified cis-IPTase hCIT, enhances hCIT protein stability, and promotes Dol-P production. Identification of NgBR as a component of the cis-IPTase machinery yields insights into the regulation of dolichol biosynthesis.


Assuntos
Dolicóis/biossíntese , Receptores de Superfície Celular/fisiologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/deficiência , Alquil e Aril Transferases/metabolismo , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Fosfatos de Dolicol/biossíntese , Fosfatos de Dolicol/deficiência , Dolicóis/deficiência , Ativação Enzimática/genética , Glicoproteínas/metabolismo , Humanos , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Proteínas de Transporte Vesicular
15.
Development ; 135(21): 3599-610, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18832392

RESUMO

In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFbeta and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development.


Assuntos
Artérias/embriologia , Comunicação Autócrina , Fatores de Crescimento de Fibroblastos/metabolismo , Coração/embriologia , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Artérias/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epitélio/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Deleção de Genes , Dosagem de Genes , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Dev Dyn ; 237(2): 447-53, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18161057

RESUMO

To study the roles of key transcription factor networks, growth factors, and signaling molecules in the endoderm, notochord, and floorplate, we developed an inducible Cre-expressing system for altering gene function in this tissue. We generated an allele of Foxa2 that directs a tamoxifen-regulated Cre in the Foxa2 expression domain (Foxa2(mcm)). Activity of Foxa2(mcm) recapitulates endogenous Foxa2 expression in endoderm, notochord, and floorplate. Efficiency of the system in a given tissue type was dose- and timing-dependent. By comparing efficiency and location of Cre activity after administration of tamoxifen by oral gavage vs. intraperitoneal injection, we found that oral gavage achieves more rapid, robust recombination with less embryonic toxicity. This system will be useful for controlling the activity of floxed alleles at multiple stages of mouse embryogenesis and fetal development.


Assuntos
Endoderma/embriologia , Fator 3-beta Nuclear de Hepatócito/genética , Integrases/metabolismo , Tamoxifeno/farmacologia , Administração Oral , Animais , Relação Dose-Resposta a Droga , Endoderma/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hibridização In Situ , Camundongos , Mutagênese Insercional , Tamoxifeno/administração & dosagem , Fatores de Tempo
17.
Dev Dyn ; 236(4): 1085-92, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17304540

RESUMO

We targeted the reverse tetracycline controlled transactivator (rtTA) to the Foxa2 locus (Foxa2(ITA)) to generate a system for regulating Cre-recombinase activity within Foxa2 expression domains, including the endoderm, notochord, and floor plate of early mouse embryos. The use of an internal ribosomal entry site to obtain rtTA expression preserves Foxa2 function of the targeted allele. Cre activity with this system reflects the level of endogenous Foxa2 activity and is also tightly controlled by doxycycline. The location of Cre activity within the broader Foxa2 expression domain can be restricted by altering the timing of doxycycline administration. Isolated floor plate expression can be obtained in this manner. This system will provide a useful tool for manipulating gene expression in endoderm, notochord, and floor plate, all of which are tissues with important structural and patterning functions during embryogenesis.


Assuntos
Sistema Nervoso Central/metabolismo , Endoderma/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Integrases/genética , Notocorda/metabolismo , Transgenes , Animais , Sistema Nervoso Central/embriologia , Doxiciclina/farmacologia , Desenvolvimento Embrionário/genética , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Marcação de Genes , Fator 3-beta Nuclear de Hepatócito/metabolismo , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Elementos Reguladores de Transcrição
18.
Dev Biol ; 299(1): 257-71, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16949563

RESUMO

Newts have the remarkable ability to regenerate lost appendages including their forelimbs, hindlimbs, and tails. Following amputation of an appendage, the wound is rapidly closed by the migration of epithelial cells from the proximal epidermis. Internal cells just proximal to the amputation plane begin to dedifferentiate to form a pool of proliferating progenitor cells known as the regeneration blastema. We show that dedifferentiation of internal appendage cells can be initiated in the absence of amputation by applying an electric field sufficient to induce cellular electroporation, but not necrosis or apoptosis. The time course for dedifferentiation following electroporation is similar to that observed following amputation with evidence of dedifferentiation beginning at about 5 days postelectroporation and continuing for 2 to 3 weeks. Microarray analyses, real-time RT-PCR, and in situ hybridization show that changes in early gene expression are similar following amputation or electroporation. We conclude that the application of an electric field sufficient to induce transient electroporation of cell membranes induces a dedifferentiation response that is virtually indistinguishable from the response that occurs following amputation of newt appendages. This discovery allows dedifferentiation to be studied in the absence of wound healing and may aid in identifying genes required for cellular plasticity.


Assuntos
Diferenciação Celular , Eletroporação/métodos , Membro Anterior/citologia , Membro Posterior/citologia , Salamandridae/fisiologia , Amputação Cirúrgica , Animais , Ciclo Celular , Morte Celular , Membro Anterior/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regeneração , Cauda/citologia , Fatores de Tempo
19.
Development ; 133(12): 2419-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16720879

RESUMO

Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Coração/anatomia & histologia , Coração/embriologia , Morfogênese , Transdução de Sinais/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Anormalidades Cardiovasculares , Morte Celular , Proliferação de Células , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Coração/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Faringe/anatomia & histologia , Faringe/embriologia , Faringe/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição
20.
J Biol Chem ; 277(33): 30264-70, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12050150

RESUMO

In eukaryotes, Rad51 and Rad52 are two key components of homologous recombination and recombinational repair. These two proteins interact with each other. Here we investigated the role of interaction between Rhp51 and Rad22, the fission yeast homologs of Rad51 and Rad52, respectively, on the function of each protein. We identified a direct association between the two proteins and their self-interactions both in vivo and in vitro. We also determined the binding domains of each protein that mediate these interactions. To characterize the role of Rhp51-Rad22 interaction, we used random mutagenesis to identify the mutants Rhp51 and Rad22, which cannot interact each other. Interestingly, we found that mutant Rhp51 protein, which cannot interact with either Rad22 or Rti1 (G282D), lost its DNA repair ability. In contrast, mutant Rad22 proteins, which cannot specifically bind to Rhp51 (S379L and P381L), maintained their DNA repair ability. These results suggest that the interaction between Rhp51 and Rad22 is crucial for the recombinational repair function of Rhp51. However, the significance of this interaction on the function of Rad22 remains to be characterized further.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Recombinação Genética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Reparo do DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Rad51 Recombinase , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...